[1] |
Lin F. Nonlinear theory of defects in nematic liquid crystals; Phase transition and flow phenomena. Comm Pure Appl Math, 1989, 42(6): 789-814
|
[2] |
Galdi G P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations:Steady-State Problems. New York: Springer, 2011
|
[3] |
Chae D, Wolf J. On Liouville type theorems for the steady Navier-Stokes equations in $\mathbb{R}^3$. J Dyn Differ Equ, 2016, 261(10): 5541-560
|
[4] |
Seregin G. A Liouville type theorem for steady-state Navier-Stokes equations. arXiv:1611.01563, 2016
|
[5] |
Chae D. Anisotropic Liouville type theorem for the stationary Navier-Stokes equations in $\mathbb{R}^3$. Appl Math Lett, 2023, 142: 108655
|
[6] |
Lin F, Lin J, Wang C. Liquid crystal flows in two dimensions. Arch Ration Mech Anal, 2010, 197(1): 297-336
|
[7] |
Hong M C. Global existence of solutions of the simplified Ericksen-Leslie system in dimension two. Calc Var Partial Differ Equ, 2011, 40(1/2): 15-36
|
[8] |
Xu X, Zhang Z. Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows. J Dyn Differ Equ, 2012, 252(2): 1169-1181
|
[9] |
Lin F, Wang C. On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chin Ann Math Ser B, 2010, 31: 921-938
|
[10] |
Lin F, Wang C. Global existence of weak solutions of the nematic liquid crystal flow in dimension three. Comm Pure Appl Math, 2016, 69(8): 1532-1571
|
[11] |
Jarrín O. Liouville theorems for a stationary and non-stationary coupled system of liquid crystal flows in local Morrey spaces. J Math Fluid Mech, 2022, 24: Article number 50
|
[12] |
Hao Y, Liu X, Zhang X. Liouville theorem for steady-state solutions of simplified Ericksen-Leslie system. arXiv:1906.06318v1, 2019
|
[13] |
Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press, 1970
|