Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (3): 650-660.

Previous Articles     Next Articles

On the Schrödinger-Poisson System with Asymptotically Linear Term and Coulomb Potential

Chang Jinhua,Wei Na*()   

  1. hongnan University of Economics and Law, Wuhan 430073
  • Received:2023-04-27 Revised:2023-10-14 Online:2024-06-26 Published:2024-05-17
  • Supported by:
    NSFC(12071482)

Abstract:

The purpose of this paper is to study the following Schrödinger-Poisson system

$\begin{equation} \left\{\begin{array}{ll} -\Delta u + \Big(\omega-\sum\limits_{i=1}^m\frac{1}{|x-x_i|}\Big)u+\lambda\phi (x)u =f(u)\,\,\, &x\in \mathbb{R}^3, \\ -\Delta\phi = |u|^{2},\, \ &u\in H^1(\mathbb{R}^3), \end{array}\right. \end{equation}$

where $\omega>0$, $\lambda>0$, $x_i\in\mathbb{R}^3$, $ m\in\mathbb{N}$, $f(u)\sim lu$ (as $u\rightarrow+\infty$) is the asymptotically linear term. We study the effect of values of parameters $\omega$, $\lambda$ and asymptotic coefficient $l$ on the existence of ground state, multiple solutions to system (P), by using the variational method.

Key words: Elliptic equation, Asymptotically linear, Variational method

CLC Number: 

  • O175.25
Trendmd