| [1] | Ambrosetti A, Ruiz D. Multiple bound states for the Schr?dinger Poisson problem. Commun Contemp Math, 2008, 10(3): 391-404 |
| [2] | Azzollini A, Pomponio A. Ground state solutions for the nonlinear Schr?dinger-Maxwell equations. J Math Anal Appl, 2008, 345: 90-108 |
| [3] | Bokanowski O, López J, Soler J. On an exchange interaction model for quantum transport: The Schr?dinger- Poisson-Slater system. Math Models Methods Appl Sci, 2003, 13(10): 1397-1412 |
| [4] | Bokanowski O, Mauser N. Local approximation for the Hartree-Fock exchange potential: A deformation approach. Math Models Methods Appl Sci, 1999, 9(6): 941-961 |
| [5] | D’Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schr?dinger-Maxwell equations. Proc Roy Soc Edinburgh Sect A, 2004, 134(5): 893-906 |
| [6] | Jiang Y S, Wang Z P, Zhou H S. Positive solutions for Schr?dinger-Poisson-Slater system with covercive potential. Topol Methods Nonlinear Anal, 2021, 57: 427-439 |
| [7] | Jiang Y S, Zhou H S. Multiple solutions for a Schr?dinger-Poisson-Slater equation with external Coulomb potential. Science China Mathematics, 2014, 57: 1163-1174 |
| [8] | Jiang Y S, Zhou H S. Schr?dinger-Poisson system with steep potential well. J Differential Equations, 2011, 251: 582-608 |
| [9] | Kikuchi H. On the existence of a solution for elliptic system related to the Maxwell-Schr?dinger equations. Nonlinear Anal, 2007, 67(5): 1445-1456 |
| [10] | Lieb E, Simon B. The Hartree-Fock theory for Coulomb systems. Comm Math Phys, 1977, 53(3): 185-194 |
| [11] | Lions P. Some remarks on Hartree equation. Nonlinear Anal, 1981, 5(11): 1245-1256 |
| [12] | Lions P. Solutions of Hartree-Fock equations for Coulomb systems. Comm Math Phys, 1987, 109(1): 33-97 |
| [13] | Miao C X, Zhang J Y, Zheng J Q. A nonlinear Schr?dinger equation with Coulomb potential. Acta Math Sci, 2022, 42B(6): 2230-2256 |
| [14] | Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Washington: AMS & CBMS, 1986 |
| [15] | Reed M, Simon B. Methods of Modern Mathematical Physics IV. New York: Academic Press, 1978 |
| [16] | Ruiz D. The Schr?dinger-Poisson equation under the effect of a nonlinear local term. J Funct Anal, 2006, 237: 655-169 |
| [17] | Ruiz D. On the Schr?dinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases. Arch Rational Mech Anal, 2010, 198: 349-368 |
| [18] | Sánchez ó, Soler J. Long-time dynamics of the Schr?dinger-Poisson-Slater system. J Statist Phys, 2004, 114(1/2): 179-204 |
| [19] | Slater J. A simplification of the Hartree-Fock method. Phys Rev, 1951, 81(3): 385-390 |
| [20] | Stuart C. Existence theory for the Hartree equation. Arch Rational Mech Anal, 1973, 51: 60-69 |
| [21] | Wang Z P, Zhou H S. Positive solution for a nonlinear stationary Schr?dinger-Poisson system in R3. Discrete Contin Dyn Syst, 2007, 18(4): 809-816 |
| [22] | Willem M. Minimax Theorems (Progress in Nonlinear Differential Equations and Their Applications, 24). Boston: Birkh?user, 1996 |
| [23] | Zhao L G, Zhao F K. On the existence of solutions for the Schr?dinger-Poisson equations. J Math Anal Appl, 2008, 346: 155-169 |