Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (3): 650-660.
Previous Articles Next Articles
Received:
2023-04-27
Revised:
2023-10-14
Online:
2024-06-26
Published:
2024-05-17
Supported by:
CLC Number:
Chang Jinhua, Wei Na. On the Schrödinger-Poisson System with Asymptotically Linear Term and Coulomb Potential[J].Acta mathematica scientia,Series A, 2024, 44(3): 650-660.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Ambrosetti A, Ruiz D. Multiple bound states for the Schrödinger Poisson problem. Commun Contemp Math, 2008, 10(3): 391-404 |
[2] | Azzollini A, Pomponio A. Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J Math Anal Appl, 2008, 345: 90-108 |
[3] | Bokanowski O, López J, Soler J. On an exchange interaction model for quantum transport: The Schrödinger- Poisson-Slater system. Math Models Methods Appl Sci, 2003, 13(10): 1397-1412 |
[4] | Bokanowski O, Mauser N. Local approximation for the Hartree-Fock exchange potential: A deformation approach. Math Models Methods Appl Sci, 1999, 9(6): 941-961 |
[5] | D’Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc Roy Soc Edinburgh Sect A, 2004, 134(5): 893-906 |
[6] | Jiang Y S, Wang Z P, Zhou H S. Positive solutions for Schrödinger-Poisson-Slater system with covercive potential. Topol Methods Nonlinear Anal, 2021, 57: 427-439 |
[7] | Jiang Y S, Zhou H S. Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential. Science China Mathematics, 2014, 57: 1163-1174 |
[8] | Jiang Y S, Zhou H S. Schrödinger-Poisson system with steep potential well. J Differential Equations, 2011, 251: 582-608 |
[9] | Kikuchi H. On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations. Nonlinear Anal, 2007, 67(5): 1445-1456 |
[10] | Lieb E, Simon B. The Hartree-Fock theory for Coulomb systems. Comm Math Phys, 1977, 53(3): 185-194 |
[11] | Lions P. Some remarks on Hartree equation. Nonlinear Anal, 1981, 5(11): 1245-1256 |
[12] | Lions P. Solutions of Hartree-Fock equations for Coulomb systems. Comm Math Phys, 1987, 109(1): 33-97 |
[13] | Miao C X, Zhang J Y, Zheng J Q. A nonlinear Schrödinger equation with Coulomb potential. Acta Math Sci, 2022, 42B(6): 2230-2256 |
[14] | Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Washington: AMS & CBMS, 1986 |
[15] | Reed M, Simon B. Methods of Modern Mathematical Physics IV. New York: Academic Press, 1978 |
[16] | Ruiz D. The Schrödinger-Poisson equation under the effect of a nonlinear local term. J Funct Anal, 2006, 237: 655-169 |
[17] | Ruiz D. On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases. Arch Rational Mech Anal, 2010, 198: 349-368 |
[18] | Sánchez Ó, Soler J. Long-time dynamics of the Schrödinger-Poisson-Slater system. J Statist Phys, 2004, 114(1/2): 179-204 |
[19] | Slater J. A simplification of the Hartree-Fock method. Phys Rev, 1951, 81(3): 385-390 |
[20] | Stuart C. Existence theory for the Hartree equation. Arch Rational Mech Anal, 1973, 51: 60-69 |
[21] | Wang Z P, Zhou H S. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete Contin Dyn Syst, 2007, 18(4): 809-816 |
[22] | Willem M. Minimax Theorems (Progress in Nonlinear Differential Equations and Their Applications, 24). Boston: Birkhäuser, 1996 |
[23] | Zhao L G, Zhao F K. On the existence of solutions for the Schrödinger-Poisson equations. J Math Anal Appl, 2008, 346: 155-169 |
[1] |
Chen Shangjie.
Infinitely Many Large Energy Solutions for the Klein-Gordon-Born-Infeld Equation on |
[2] | Duan Xueliang, Wu Xiaofan, Wei Gongming, Yang Haitao. Multiple Positive Solutions of Kirchhoff Type Linearly Coupled System with Critical Exponent [J]. Acta mathematica scientia,Series A, 2024, 44(3): 699-716. |
[3] | Daiji Yongzhi, Wang Yiru, Huang Shuibo. Monotonicity and Symmetry of Singular Solutions to Semilinear Mixed Local and Nonlocal Elliptic Equations [J]. Acta mathematica scientia,Series A, 2024, 44(2): 453-464. |
[4] | Fu Peiyuan, Xia Aliang. Multiplicity of High Energy Solutions for a Class of Nonlocal Critical Elliptic System [J]. Acta mathematica scientia,Series A, 2024, 44(1): 101-119. |
[5] | Li Renhua, Wang Zhengping. Normalized Solution of Fractional Schrödinger-Poisson Equations with Coercive Potential [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1723-1730. |
[6] | Zhou Yinggao, Li Zhouxin. An Application of Linking Theorem to Degenerative Elliptic Equations [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1759-1773. |
[7] | Li Yixian,Zhang Zhengjie. The Existence of Ground State Solutions for a Class of Equations Related to Klein-Gordon-Maxwell Systems [J]. Acta mathematica scientia,Series A, 2023, 43(3): 680-690. |
[8] | Xiong Chen, Gao Qi. Locally Minimizing Solutions of a Two-component Ginzburg-Landau System [J]. Acta mathematica scientia,Series A, 2023, 43(2): 321-340. |
[9] |
Ge Bin, Yuan Wenshuo.
Existence and Multiplicity of Radial Solutions for Double Phase Problem on the Entire Space |
[10] | Liao Dan, Zhang Huiping, Yao Wangjin. Variational Approach to Existence of Multiple Solutions for Neumann Boundary Value Problem of Impulsive Differential Equations [J]. Acta mathematica scientia,Series A, 2023, 43(2): 447-457. |
[11] | Anran Li,Dandan Fan,Chongqing Wei. Existence and Asymptotic Behaviour of Solutions for Kirchhoff Type Equations with Zero Mass and Critical [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1729-1743. |
[12] |
Penghui Zhang,Zhiqing Han.
Existence of Nontrivial Solutions for Non-autonomous Kirchhoff-type Equations with Critical Growth in |
[13] | Yu Duan,Xin Sun. Existence of Positive Solutions for Klein-Gordon-Maxwell Systems with an Asymptotically Linear Nonlinearity [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1103-1111. |
[14] | Qian Wang,Lin Chen,Nan Tang. Infinitely Solutions for a Class of Nonlocal Quasilinear Elliptic Equations [J]. Acta mathematica scientia,Series A, 2022, 42(3): 767-774. |
[15] | Xudong Shang,Jihui Zhang. Existence of Positive Ground State Solutions for the Choquard Equation [J]. Acta mathematica scientia,Series A, 2022, 42(3): 749-759. |
|