| [1] | Alves C O, Figueiredo G M. Multiple solutions for a semilinear elliptic equation with critical growth and magnetic field. Milan J Math, 2014, 82: 389-405 | | [2] | Alves C O, Figueiredo G M, Yang M B. Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field. Asymptotic Analysis, 2016, 96: 135-159 | | [3] | Arioli G, Szulkin A. A Semilinear Schr?dinger equation in the presence of a magnetic field. Arch Rational Mech Anal, 2003, 170: 277-295 | | [4] | Benci V, Cerami G. Positive solutions of some nonlinear elliptic problems in exterior domains. Arch Rational Mech Anal, 1987, 99: 283-300 | | [5] | Benci V, Cerami G. The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch Rational Mech Anal, 1991, 114: 79-93 | | [6] | Bueno H, Mamami G G, Pereira G A. Ground state of a magnetic nonlinear Choquard equation. Nonlinear Anal, 2019, 181: 189-199 | | [7] | Cingolani S, Clapp M, Secchi S. Multiple solutions to a magnetic nonlinear Choquard equation. Z Angew Math Phys, 2012, 63: 233-248 | | [8] | Cingolani S, Secchi S, Squassina M. Semi-classical limit for Schr?dinger equations with magnetic field and Hartree-type nonlinearities. Proc Roy Soc Edinburgh A, 2010, 140: 973-1009 | | [9] | Esteban M, Lions P L. Stationary solutions of nonlinear Schr?dinger equations with an external magnetic field//Colombini F, Marino A, Modical L, et al. PDE and Calculus of Variations, Vol. I:Essays in honor of Ennio De Giorgi. Boston: Birkh?user, 1989: 401-449 | | [10] | Gao F S, Yang M B. On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation. Sci China Math, 2018, 61: 1219-1242 | | [11] | Gao F S, Yang M B. On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents. J Math Anal Appl, 2017, 448: 1006-1041 | | [12] | Ghimenti M, Pagliardini D. Multiple positive solutions for a slightly subcritical Choquard problem on bounded domains. Calc Var Partial Differ Equ, 2019, 58: 1-21 | | [13] | Goel D. The effect of topology on the number of positive solutions of elliptic equation involving Hardy-Littlewood-Sobolev critical exponent. Top Methods in Nonlinear Anal, 2019, 54: 751-771 | | [14] | Ji C, R?dulescu V D. Multi-bump solutions for the nonlinear magnetic Choquard equation with deepening potential well. J Differential Equations, 2022, 306: 251-279 | | [15] | Lieb E H. Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Studies in Appl Math, 1976/77, 57: 93-105 | | [16] | Lieb E H, Loss M. Analysis. Providence, RI: Amer Math Soc, 1997 | | [17] | Lions P L, The Choquard equation and related questions. Nonlinear Anal, 1980, 4: 1063-1072 | | [18] | Liu F Q, Yang J F, Yu X H. Positive solutions to multi-critical elliptic problems. Ann di Mate Pura ed Appl, 2023, 202: 851-875 | | [19] | Lü D F. Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Commun Pure Appl Anal, 2016, 15: 1781-1795 | | [20] | Miyagaki O H. On a class of semilinear elliptic problems in RN with critical growth. Nonlinear Anal, 1997, 29: 773-781 | | [21] | Moroz V, Schaftingen J Van. Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265: 153-184 | | [22] | Moroz V, Schaftingen J Van. Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. Comm Contem Math, 2015, 17: 1550005 | | [23] | Mukherjee T, Sreenadh K. On concentration of least energy solutions for magnetic critical Choquard equations. J Math Anal Appl, 2018, 464: 402-420 | | [24] | Salazar D. Vortex-type solutions to a magnetic nonlinear Choquard equation. Z Angew Math Phys, 2015, 66: 663-675 | | [25] | Tang Z W, Wang Y L. Least energy solutions for semilinear Schr?dinger equation with electromagnetic fields and critical growth. Science China Mathematics, 2015, 58: 2317-2328 | | [26] | Wen R J, Yang J F, Yu X H. Multiple solutions for critical nonlocal elliptic problems with magnetic field. Discrete and Continuous Dynamical Systems-S, 2023, 17(2): 530-546 | | [27] | Willem M. Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, 24, Boston MA:Birkh?user Boston Inc, 1996 | | [28] | Xu Z Y, Yang J F. Multiple solutions to multi-critical Schr?dinger equations. Advanced Nonlinear Studies, 2022, 22: 273-288 | | [29] | Yang M B, Wei Y H. Existence and multiplicity of solutions for nonlinear Schr?dinger equations with magnetic field and Hartree type nonlinearities. J Math Anal Appl, 2013, 403: 680-694 |
|