Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (2): 326-353.
Previous Articles Next Articles
Received:
2022-06-08
Revised:
2023-10-07
Online:
2024-04-26
Published:
2024-04-07
Supported by:
CLC Number:
Zhang Tianwei, Li Yongkun. Almost Automorphic Dynamics of Nonlocal Laplacian Saturating Schrödinger-Klein-Gordon Equations[J].Acta mathematica scientia,Series A, 2024, 44(2): 326-353.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Zhao C D, Caraballo T, Łukaszewicz G. Statistical solution and Liouville type theorem for the Klein-Gordon-Schrödinger equations. J Differ Equations, 2021, 281: 1-32 |
[2] | Missaoui S. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system in $\mathbb{R}^3$ nonlinear KGS system. Commun Pur Appl Anal, 2022, 21(2): 567-584 |
[3] | Zou G A, Wang B, Sheu T W H. On a conservative Fourier spectral Galerkin method for cubic nonlinear Schrödinger equation with fractional Laplacian. Math Comput Simulat, 2020, 168: 122-134 |
[4] | Fu Y Y, Cai W J, Wang Y S. Structure-preserving algorithms for the two-dimensional fractional Klein-Gordon-Schrödinger equation. Appl Numer Math, 2020, 156: 77-93 |
[5] |
Poulou M E, Filippakis M E. Global attractor of a dissipative fractional Klein Gordon Schrödinger System. J Dyn Differ Equ, 2022, 34(2): 945-960
doi: 10.1007/s10884-020-09907-7 |
[6] | Wu L B, Ma Q, Ding X H. Energy-preserving scheme for the nonlinear fractional Klein-Gordon Schrödinger equation. Math Comput Simulat, 2021, 190: 1110-1129 |
[7] | Veeresha P, Prakasha D G, Singh J, Kumar D, Baleanu D. Fractional Klein-Gordon-Schrödinger equations with Mittag-Leffler memory. Chinese J Phys, 2020, 68: 65-78 |
[8] | Bégout P, Díaz J I. Finite time extinction for a class of damped Schrödinger equations with a singular saturated nonlinearity. J Differ Equations, 2022, 308: 252-285 |
[9] |
Lehrer R, Soares S H M. Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations. Nonlinear Anal, 2020, 197: 111841
doi: 10.1016/j.na.2020.111841 |
[10] | Maia L A, Ruviaro R, Moura E L. Bound state for a strongly coupled nonlinear Schrödinger system with saturation. Milan Journal of Mathematics, 2019, 88: 35-63 |
[11] | Zhu Q, Zhou Z, Wang L. Exact solutions for a coupled discrete nonlinear Schrödinger system with a saturation nonlinearity. Appl Math Lett, 2017, 74: 7-14 |
[12] | Carles R. Nonlinear Schrödinger equation and frequency saturation. Analysis PDE, 2012, 5: 1157-1173 |
[13] | Bochner S. Curvature and Betti numbers in real and complex vector bundles. Uinv Politec Torino Rend Sem Mat, 1955, 15: 225-253 |
[14] | Shen W X, Yi Y F. Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows. Providence, RI: Memoirs of the American Mathematical Society, 1998 |
[15] | Shen W X, Wang Y, Zhou D. Almost automorphically and almost periodically forced circle flows of almost periodic parabolic equations on $S^1$. J Dyn Differ Equ, 2019, 32: 1687-1729 |
[16] | Li Y K, Shen S P. Compact almost automorphic function on time scales and its application. Qual Theor Dyn Syst, 2021, 20: 1-21 |
[17] | Caraballo T, Cheban D. Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard's separation condition, I. J Differ Equations, 2009, 246(1): 108-128 |
[18] | Caraballo T, Cheban D. Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard's separation condition, II. J Differ Equations, 2009, 246(3): 1164-1186 |
[19] | Diagana T. Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. New York: Springer, 2013 |
[20] |
Zhang T W, Li Y K. Global exponential stability of discrete-time almost automorphic Caputo-Fabrizio BAM fuzzy neural networks via exponential Euler technique. Knowl-Based Syst, 2022, 246: 108675
doi: 10.1016/j.knosys.2022.108675 |
[21] | PÖSchel J. On the construction of almost periodic solutions for a nonlinear Schrödinger equation. Ergod Theor Dyn Syst, 2002, 22(5): 1537-1549 |
[22] |
Liu S J. The existence of almost-periodic solutions for 1-dimensional nonlinear Schrödinger equation with quasi-periodic forcing. J Math Phys, 2020, 61(2): 031502
doi: 10.1063/1.5134503 |
[23] | Geng J S. Almost periodic solutions for a class of higher dimensional Schrödinger equations. Front Math China, 2009, 4: 463-482 |
[24] | Liu S J. Almost-periodic solutions for a quasi-periodically forced nonlinear Schrödinger equation. Indian J Pure Appl Phy, 2021, 53: 10-31 |
[25] | Signing L. Almost periodic homogenization of the Klein-Gordon type equation. Differ Equat Appl, 2020, 12(2): 143-163 |
[26] | Abdallah A Y, Al-Khader T M, Abu-Shaab H N. Attractors of the Klein-Gordon-Schrödinger lattice systems with almost periodic nonlinear part. Discrete Cont Dyn-B, 2022, 27(11): 6481-6500 |
[27] | Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. B Sci Math, 2012, 136(5): 521-573 |
[28] | Servadei R, Valdinoci E. Variational methods for non-local operators of elliptic type. Discrete Cont Dyn, 2013, 33(5): 2105-2137 |
[29] |
Kamenskii M, Obukhovskii V, Petrosyan G, Yao J C. Boundary value problems for semilinear differential inclusions of fractional order in a Banach space. Appl Anal, 2018, 97(4): 571-591
doi: 10.1080/00036811.2016.1277583 |
[30] | N'Guérékata G M. Almost Periodic and Almost Automorphic Functions in Abstract Spaces. New York: Springer, 2021 |
[1] | Chen Mingchao, Xue Yanfang. Multiple Solutions for a Class of Quasilinear Schrödinger Equations with a Perturbed Term [J]. Acta mathematica scientia,Series A, 2024, 44(2): 417-428. |
[2] | Jian Hui, Gong Min, Wang Li. On the Blow-Up Solutions of Inhomogeneous Nonlinear Schrödinger Equation with a Partial Confinement [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1350-1372. |
[3] | Cheng Qingfang,Liao Jiafeng,Yuan Yanxiang. Existence of Positive Solutions for a Class of Schrödinger-Newton Systems with Critical Exponent [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1373-1381. |
[4] | Gui Kunming,Tao Hongshan,Yang Jun. Normalized Ground States for the Quasi-linear Schrödinger Equation with Combined Nonlinearities [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1062-1072. |
[5] | Wang Jiyan,Cheng Yongkuan. Quasilinear Schrödinger Equations for the Heisenberg Ferromagnetic Spin Chain with the Supercritical Growth [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1073-1084. |
[6] | Li Yixian,Zhang Zhengjie. The Existence of Ground State Solutions for a Class of Equations Related to Klein-Gordon-Maxwell Systems [J]. Acta mathematica scientia,Series A, 2023, 43(3): 680-690. |
[7] | Xue Yanfang, Zhu Xincai. Existence of Multiple Solutions for a Class of Quasilinear Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2023, 43(1): 93-100. |
[8] | Wang Chunjiang, Zhang Jian. Simple-Pole and Double-Pole Solutions for the Mixed Chen-Lee-Liu Derivative Nonlinear Schrödinger Equation with Nonzero Boundary Conditions [J]. Acta mathematica scientia,Series A, 2023, 43(1): 101-122. |
[9] | Li Deke, Wang Qingxuan. Limit Behavior of Mass Critical Inhomogeneous Schrödinger Equation at the Threshold [J]. Acta mathematica scientia,Series A, 2023, 43(1): 123-131. |
[10] | Yu Duan,Xin Sun. Existence of Positive Solutions for Klein-Gordon-Maxwell Systems with an Asymptotically Linear Nonlinearity [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1103-1111. |
[11] | Changqing Tong,Jing Zheng. Periodic Solutions of a Semi-Linear Klein-Gordon Equations with High Frequencies [J]. Acta mathematica scientia,Series A, 2019, 39(3): 484-500. |
[12] | Ge Zhihao, Cao Jiwei. A New Absolutely Stable hp Discontinuous Galerkin Methodfor the Reaction-Diffusion Problem [J]. Acta mathematica scientia,Series A, 2018, 38(2): 385-394. |
[13] | Chen Lizhen, Li Anran, Li Gang. Existence of Infinitely Many Solutions to a Class of Klein-Gordon-Maxwell System with Superlinear and Sublinear Terms [J]. Acta mathematica scientia,Series A, 2017, 37(4): 663-670. |
[14] | SHI Qi-Hong. Uniqueness of the Solution and Energy Decay for Nonlinear KGS System [J]. Acta mathematica scientia,Series A, 2013, 33(5): 842-849. |
[15] | HE Siriguleng, LI Hong. Mixed Space--time Discontinuous Galerkin Method for Elastodynamics [J]. Acta mathematica scientia,Series A, 2012, 32(6): 1179-1190. |
|