Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (2): 298-312.

Previous Articles     Next Articles

Monotonicity Rules of the Ratios of Parametric Nabla Integrals and Parametric Nabla Integrals with Variable Limits and Their Applications

Tian Jingfeng(),Mao Zhongxuan(),Sun Longfa*()   

  1. Hebei Key Laboratory of Physics and Energy Technology, School of Mathematics and Physics, North China Electric Power University, Hebei Baoding 071003
  • Received:2023-05-22 Revised:2023-09-28 Online:2024-04-26 Published:2024-04-07
  • Supported by:
    National Natural Science Foundation of China(12101234);Natural Science Foundation of Hebei Province(A2022502010);Fundamental Research Funds for the Central Universities(2023MS164);China Scholarship Council

Abstract:

Using the Nabla integral on time scales, this paper establishes the monotonicity rules for the ratios of parametric Nabla integrals

$s\mapsto \frac{\int_\alpha^\beta \Psi(s,v) \nabla v}{\int_\alpha^\beta \Phi(s,v) \nabla v} \quad \text{and} \quad s\mapsto \frac{\int_{v_0}^\infty \Psi(s,v) \nabla v}{\int_{v_0}^\infty \Phi(s,v) \nabla v}$

and the ratios of the parametric Nabla integrals with variable limits

$s\mapsto \frac{\int_{s}^\infty \psi(v) w(s,v) \nabla v }{\int_{s}^\infty \phi(v) w(s,v) \nabla v} \quad \text{and} \quad s\mapsto \frac{\int_{v_0}^{s} \psi(v) w(s,v) \nabla v }{\int_{v_0}^{s} \phi(v) w(s,v) \nabla v}.$

In the part of monotonicity rules for the ratios of parametric Nabla integrals, some different special cases are considered in detail, including the ratio of two polynomials on time scales and the ratio of two Nabla Laplace transforms. Using these monotonicity rules, the monotonicity of the functions $ s\mapsto\frac{\sum\limits_{i=1}^n \mathcal{J}{u_i}(s)}{n \mathcal{J}{\bar{u}}(s)} $, $ s\mapsto\frac{\sum\limits_{i=1}^n \mathcal{J}{v}(u_is)}{n \mathcal{J}{v}(\bar{u}s)} $, $ s\mapsto\frac{\sum\limits_{i=1}^n K_{u_i}(s)}{n K_{\bar{u}}(s)} $, $ s\mapsto\frac{\sum\limits_{i=1}^n \mathcal{Y}{u_i}(s)}{n \mathcal{Y}{\bar{u}}(s)} $ and $ s\mapsto\frac{\sum\limits_{i=1}^n \mathcal{Y}{v}(u_is)}{n \mathcal{Y}{v}(\bar{u}s)} $ is proved, where $ \bar{u}=\sum\limits_{i=1}^n u_i/n $, $ I_u(\cdot), K_u(\cdot) $ are the modified Bessel functions of the first and second kind, respectively, $ \mathcal{J}_u(s):= \big( \frac{s}{2} \big)^{-u} I_{u}(s) $ and $ \mathcal{Y}_u(s):=K_u(s)-K_0(s) $.

Key words: Monotonicity rules, Time scales, Nabla integral, Modified Bessel functions, Laplace transforms

CLC Number: 

  • O171
Trendmd