[1] |
Chakraborty B, Ojha S, Birbonshi R. On the numerical range of some weighted shift operators. Linear Algebra Appl, 2022, 640: 179-190
|
[2] |
Berger C A, Stampfli J G. Mapping theorems for the numerical range. Amer J Math, 1967, 89: 1047-1055
|
[3] |
吴德玉, 阿拉坦仓, 黄俊杰, 海国君. Hilbert 空间中线性算子数值域及其应用. 北京: 科学出版社, 2018
|
|
Wu D Y, Alatancang, Huang J J, Hai G J. Numerical Range of Linear Operators in Hilbert Space and Its Applications. Beijing: Science Press, 2018 (in Chinese)
|
[4] |
邬慧婷, 吴德玉, 阿拉坦仓. 有界分块算子矩阵的数值半径估计. 数学学报, 2021, 64(3): 375-384
doi: 10.12386/A2021sxxb0032
|
|
Wu H T, Wu D Y, Alatancang. Numerical range estimation of boundary Block operator matrices. Acta Math Sinica (Chinese Ser), 2021, 64(3): 375-384 (in Chinese)
doi: 10.12386/A2021sxxb0032
|
[5] |
Wang K Z, Wu P Y. Numerical ranges of weighted shifts. J Math Anal Appl, 2011, 381: 897-909
|
[6] |
Chien M T, Sheu H A. The numerical radii of weighted shift matrices and operators. Oper Matrices, 2013, 7(1): 197-204
|
[7] |
Halmos P R. A Hilbert Space Problem Book. New York: Springer, 1982
|
[8] |
Gau H L, Wu P Y. Numerical Ranges of Hilbert Space Operators. Cambridge: Cambridge University Press, 2021
|
[9] |
Stout Q F. The numerical range of a weighted shift. Proc Amer Math Soc, 1983, 88(3): 495-502
doi: 10.1090/proc/1983-088-03
|
[10] |
Kelley R L. Weighted Shift on Hilbert Space[D]. Michigan: University of Michigan, 1966
|
[11] |
萨日娜, 吴德玉, 阿拉坦仓. 斜对角 $2\times 2$ 分块算子矩阵的二次数值半径不等式. 数学学报, 2022, 65(1): 147-152
doi: 10.12386/A2022sxxb0011
|
|
Sarina, Wu D Y, Alatancang. Quadratic numerical radius inequalities of off-diagonal $2\times 2$ Block operator matrices. Acta Math Sinica (Chinese Ser), 2022, 65(1): 147-152 (in Chinese)
doi: 10.12386/A2022sxxb0011
|