Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (2): 265-275.
Previous Articles Next Articles
Received:
2022-12-26
Revised:
2023-10-07
Online:
2024-04-26
Published:
2024-04-07
CLC Number:
Xiang Yanyu, Wang Aiping. On Symmetry of the Product of Two Higher-Order Regular Quasi-Differential Operators[J].Acta mathematica scientia,Series A, 2024, 44(2): 265-275.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 闫文文, 许美珍. 边界条件含有特征参数的四阶微分算子的自伴性和特征值的依赖性. 数学物理学报, 2022, 42A(3): 671-693 |
Yan W W, Xu M Z. The self-adjointness and dependence of eigenvalues of fourth-order differential operator with eigenparameters in the boundary conditions. Acta Mathematica Scientia, 2022, 42A(3): 671-693 | |
[2] | 孙康, 高云兰. 一类边界条件含谱参数的微分算子. 数学物理学报, 2022, 42A(3): 661-670 |
Sun K, Gao Y L. A class of differential operators with eigenparameter dependent boundary conditions. Acta Mathematica Scientia, 2022, 42A(3): 661-670 | |
[3] | Sun J. On the self-adjoint extensions of symmetric ordinary differential operators with middle deficiency indices. Acta Mathematica Sinica, 1986, (2): 152-167 |
[4] | 王爱平. 关于 Weidmann 猜想及具有转移条件微分算子的研究[D]. 呼和浩特: 内蒙古大学, 2006 |
Wang A P. On Weidmann's conjecture and differential operators with transmission conditions[D]. Hohhot: Inner Mongolia University, 2006 | |
[5] |
Wang A P, Sun J, Zettl A. Characterization of domains of self-adjoint ordinary differential operators. J Differential Equations, 2009, 246(4): 1600-1622
doi: 10.1016/j.jde.2008.11.001 |
[6] | Hao X L, Sun J, Wang A P. Characterization of domains of self-adjoint ordinary differential operators II. Results in Mathematics, 2012, 61: 255-281 |
[7] | Cao Z J, Sun J. On self-adjointness of the product of two second-order differential operators. Acta Mathematica Sinica (English Series), 1999, 15(3): 375-386 |
[8] | An J Y, Sun J. On self-adjointness of the product of two $n$-order differential operators on $[a, b]$. Annals of Differential Equations, 1998, 14(1): 50-57 |
[9] | An J Y, Sun J. On the self-adjointness of the product operators of two mth-order differential operators on [0, +$\infty$). Acta Mathematica Sinica (English Seris), 2004, 20(5): 793-802 |
[10] |
杨传富. 极限点型 Sturn-Liouille 算子乘积的自伴性. 系统科学与数学, 2006, 26(3): 368-374
doi: 10.12341/jssms09207 |
Yang C F. Self-adjointness of products of the limit-point Sturm-Liouville operators. Journal of Systems Science and Mathematical Sciences, 2006, 26(3): 368-374
doi: 10.12341/jssms09207 |
|
[11] | 张新艳, 王万义, 杨秋霞. 三个二阶微分算子积的自伴性. 内蒙古师范大学学报(自然科学汉文版), 2007, 36(1): 35-42 |
Zhang X Y, Wang W Y, Yang Q X. On self-adjointness of the product of three second-order differential operators. Journal of Inner Mongolia Normal University (Natural Science Edition), 2007, 36(1): 35-42 | |
[12] | 郑建平. 两个奇数阶微分算子乘积的自共轭性[D]. 呼和浩特: 内蒙古大学, 2009 |
Zheng J P. On the self-adjointness of product of two odd-order differential operators[D]. Hohhot: Inner Mongolia University, 2009 | |
[13] | 郭小燕. 四个二阶微分算子乘积的自共轭性[D]. 呼和浩特: 内蒙古大学, 2012 |
Guo X Y. The Self-adjointness of Product of Four Second-order Differential Operators[D]. Hohhot: Inner Mongolia University, 2012 | |
[14] | 林秋红. 一类四阶与六阶微分算子积的自伴性. 四川理工学院学报(自然科学版), 2019, 32(3): 74-79 |
Lin Q H. Self-adjointness of class 4th-order and 6th-order differential operator products. Journal of Sichuan University of & Engineering (Natural Science Edition), 2019, 32(3): 74-79 | |
[15] | 杨传富, 黄振友, 杨孝平. $2n$ 阶微分算子乘积自伴的充分必要条件. 数学物理学报, 2006, 26A(6): 953-962 |
Yang C F, Huang Z Y, Yang X P. A necessary and sufficient condition for self-adjointness of products of $ n$th-order differential operators. Acta Mathematica Scientia, 2006, 26A(6): 953-962 | |
[16] | Möller M, Zettl A. Symmetric differential operators and their Friedrichs extension. Journal of Differential Equations, 1995, (115): 50-69 |
[17] | Wang A P, Zettl A. Characterization of domains of symmetric and self-adjoint ordinary differential operators. Electronic Journal of Differential Equations, 2018, 2018(15): 1-18 |
[18] | Wang A P, Zettl A. Ordinary Differential Operators. Providence, RI: American Mathematical Society, 2019 |
[19] | Wang A P, Zettl A. A symmetric GKN-type theorem and symmetric differential operators. Journal of Differential Equations, 2018, (265): 5156-5176 |
|