Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (1): 101-119.
Previous Articles Next Articles
Received:
2023-01-05
Revised:
2023-04-13
Online:
2024-02-26
Published:
2024-01-10
Supported by:
CLC Number:
Fu Peiyuan, Xia Aliang. Multiplicity of High Energy Solutions for a Class of Nonlocal Critical Elliptic System[J].Acta mathematica scientia,Series A, 2024, 44(1): 101-119.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Benci V, Cerami G. Existence of positive solutions of the equation$-\Delta u+a(x)u=u^{\frac{N+2}{N-2}}$in$\mathbb{R}^{N}$. J Funct Anal, 1990, 88: 90-117
doi: 10.1016/0022-1236(90)90120-A |
[2] | Cerami G, Molle R. Multiple positive bound states for critical Schrödinger-Poisson systems. ESAIM Control Optim Calc Var, 2019, 25: Paper No. 73 |
[3] |
Chen W, Li C, Ou B. Classification of solutions for an integral equation. Comm Pure Appl Math, 2006, 59(3): 330-343
doi: 10.1002/cpa.v59:3 |
[4] |
Chen Z, Zou W. Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: Higher dimensional case. Calc Var Partial Differential Equations, 2015, 52(1/2): 423-467
doi: 10.1007/s00526-014-0717-x |
[5] |
Dai W, Huang J, Qin Y, et al. Regularity and classification of solutions to static Hartree equations involving fractional Laplacians. Discrete Contin Dyn Syst, 2019, 39(3): 1389-1403
doi: 10.3934/dcds.2018117 |
[6] |
Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S. Theory of Bose-Einstein condensation in trapped gases. Rev Mod Phys, 1999, 71: 463-512
doi: 10.1103/RevModPhys.71.463 |
[7] |
Du L, Yang M. Uniqueness and nondegeneracy of solutions for a critical nonlocal equation. Discrete Contin Dyn Syst, 2019, 39(10): 5847-5866
doi: 10.3934/dcds.2019219 |
[8] |
Esry B, Greene C, Burke J, Bohn J. Hartree-Fock theory for double condensates. Phys Rev Lett, 1997, 78: 3594-3597
doi: 10.1103/PhysRevLett.78.3594 |
[9] |
Gao F, Liu H, Moroz V, Yang M. High energy positive solutions for a coupled Hartree system with Hardy-Littlewood-Sobolev critical exponents. J Differential Equations, 2021, 287: 329-375
doi: 10.1016/j.jde.2021.03.051 |
[10] |
Gao F, Yang M. The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation. Sci China Math, 2018, 61(7): 1219-1242
doi: 10.1007/s11425-016-9067-5 |
[11] | Guo L, Li Q. Multiple high energy solutions for fractional Schrödinger equation with critical growth. Calc Var Partial Differential Equations, 2022, 61(1): Paper No. 15 |
[12] |
Liu H, Liu Z. Positive solutions of a nonlinear Schrödinger system with nonconstant potentials. Discrete Contin Dyn Syst, 2016, 36: 1431-1464
doi: 10.3934/dcdsa |
[13] | Liu H, Liu Z. A coupled Schrödinger system with critical exponent. Calc Var Partial Differential Equations, 2020, 59(5): Paper No. 145 |
[14] |
Mitchell M, Segev M. Self-trapping of incoherent white light. Nature, 1997, 387: 880-883
doi: 10.1038/43136 |
[15] | Wang J. Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction. Adv Nonlinear Anal, 2022, 11(1): 385-416 |
[16] | Willem M. Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, 24. Boston: Birkhäuser, 1996 |
[17] |
Zheng Y, Gao F, Shen Z, Yang M. On a class of coupled critical Hartree system with deepening potential. Math Methods Appl Sci, 2021, 44(1): 772-798
doi: 10.1002/mma.v44.1 |
|