Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (6): 1880-1896.
Previous Articles Next Articles
Pan Lingrong1,*(),Wang Yuanheng2
Received:
2022-08-26
Revised:
2023-05-17
Online:
2023-12-26
Published:
2023-11-16
Supported by:
CLC Number:
Pan Lingrong, Wang Yuanheng. The Strong Convergence Theorem of Iterative Algorithms for the Fixed Point Problem, a System of Variational Inequalities, and a Split Equilibrium Problem in Hilbert Spaces[J].Acta mathematica scientia,Series A, 2023, 43(6): 1880-1896.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Chang S S, Lee H, Chi K C. A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Analysis, 2009, 70(9): 3307-3319
doi: 10.1016/j.na.2008.04.035 |
[2] |
Plubtieng S, Punpaeng R. A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces. Journal of Mathematical Analysis and Applications, 2007, 336(1): 455-469
doi: 10.1016/j.jmaa.2007.02.044 |
[3] |
Sitthithakerngkiet K, Deepho J, Martínez-Moreno, et al. An iterative approximation scheme for solving a split generalized equilibrium, variational inequalities and fixed point problems. International Journal of Computer Mathematics, 2017, 94(12): 2373-2395
doi: 10.1080/00207160.2017.1283409 |
[4] |
Jaiboon C, Chantarangsi W, Kumam P. A convergence theorem based on a hybrid relaxed extragradient method for generalized equilibrium problems and fixed point problems of a finite family of nonexpansive mappings. Nonlinear Analysis Hybrid Systems, 2010, 4(1): 199-215
doi: 10.1016/j.nahs.2009.09.009 |
[5] |
Takahashi S, Takahashi W. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. Journal of Mathematical Analysis and Applications, 2007, 331(1): 506-515
doi: 10.1016/j.jmaa.2006.08.036 |
[6] |
Plubtieng S, Thammathiwat T. A viscosity approximation method for finding a common solution of fixed points and equilibrium problems in Hilbert spaces. Journal of Global Optimization, 2011, 50(2): 313-327
doi: 10.1007/s10898-010-9583-z |
[7] |
Takahashi S, Takahashi W. Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Analysis, 2008, 69(3): 1025-1033
doi: 10.1016/j.na.2008.02.042 |
[8] | Wang S, Gong X, Kang S. Strong convergence theorem on split equilibrium and fixed point problems in Hilbert spaces. The Bulletin of the Malaysian Mathematical Society Series 2, 2016, 41(3): 1309-1326 |
[9] |
Phuengrattana W, Klanarong C. Strong convergence of the viscosity approximation method for the split generalized equilibrium problem. Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 71: 39-64
doi: 10.1007/s12215-021-00617-7 |
[10] | Yao Y, Leng L, Postolache M, et al. Mann type iteration method for solving the split common fixed point problem. J Nonlinear Convex Anal, 2017, 18(5): 875-882 |
[11] |
Wu X, Zhao L. Viscosity approximation methods for multivalued nonexpansive mappings. Mediterr J Math, 2016, 13(5): 2645-2657
doi: 10.1007/s00009-015-0644-x |
[12] |
Yao Y, Postolache M, Yao J C. An iterative algorithm for solving the generalized variational inequalities and fixed points problems. Mathematics, 2019, 7(1): 61
doi: 10.3390/math7010061 |
[13] | Cheawchan K, Kangtunyakarn A. The modified split generalized equilibrium problem for quasi-nonexpansive mappings and applications. Journal of Inequalities and Applications, 2018, 2018: Article number 122 |
[14] | Zhao Y, Liu X, Sun R. Iterative algorithms of common solutions for a hierarchical fixed point problem, a system of variational inequalities, and a split equilibrium problem in Hilbert spaces. Journal of Inequalities and Applications, 2021, 2021: Article number 11 |
[15] | 夏平静, 蔡钢. Hilbert 空间中变分不等式问题的自适应粘性算法. 数学物理学报, 2023, 43A(2): 581-592 |
Xia P J, Cai G. Self adaptive viscosity algorithm for solving variational inequality problem in Hilbert spaces. Acta Mathematica Scientia, 2023, 43A(2): 581-592 | |
[16] | Ceng L C, Wang C Y, Yao J C. Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Journal of Inequalities and Applications, 2008, 67(3): 375-390 |
[17] |
Wang Y H, Pan C J. Viscosity approximation methods for a general variational inequality system and fixed point problems in Banach spaces. Symmetry, 2020, 12(1): 36
doi: 10.3390/sym12010036 |
[18] | Suzuki, Tomonari. Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces. Fixed Point Theory and Applications, 2005, 1: 103-123 |
[19] | Filomena C, Giuseppe M, Luigi M, et al. A hybrid projection algorithm for finding solutions of mixed equilibrium problem and variational inequality problem. Fixed Point Theory and Applications, 2010, 2010: Article number 383740 |
[20] |
Jecho Y, Zhou H, Guo G. Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings. Computers and Mathematics with Applications, 2004, 47(4/5): 707-717
doi: 10.1016/S0898-1221(04)90058-2 |
[21] |
Xu H K. Another control condition in an iterative method for nonexpansive mappings. Bulletin of the Australian Mathematical Society, 2002, 65(1): 109-113
doi: 10.1017/S0004972700020116 |
[22] | 杨静, 龙宪军. 关于伪单调变分不等式与不动点问题的新投影算法. 数学物理学报, 2022, 42A(3): 904-919 |
Yang J, Long X J. A new projection algorithm for solving pseudo-monotone variational inequality and fixed point problems. Acta Mathematica Scientia, 2022, 42A(3): 904-919 |
|