Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (5): 1350-1372.
Previous Articles Next Articles
Jian Hui(),Gong Min(),Wang Li*()
Received:
2020-09-30
Revised:
2023-03-24
Online:
2023-10-26
Published:
2023-08-09
Contact:
Li Wang
E-mail:jianhui0711141@163.com;gluminous@163.com;wangli.423@163.com
Supported by:
CLC Number:
Jian Hui, Gong Min, Wang Li. On the Blow-Up Solutions of Inhomogeneous Nonlinear Schrödinger Equation with a Partial Confinement[J].Acta mathematica scientia,Series A, 2023, 43(5): 1350-1372.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Antonelli P, Carles R, Silva J D. Scattering for nonlinear Schrödinger equation under partial harmonic confinement. Comm Math Phys, 2015, 334 (1): 367-396
doi: 10.1007/s00220-014-2166-y |
[2] |
Bao W Z, Cai Y Y. Mathematics theory and numerical methods for Bose-Einstein condensation. Kinet Relat Models, 2013, 6(1): 1-135
doi: 10.3934/krm.2013.6.1 |
[3] |
Bellazzini J, Boussaid N, Jeanjean L, Visciglia N. Existence and stability of standing waves for supercritical NLS with a partial confinement. Comm Math Phys, 2017, 353(1): 229-251
doi: 10.1007/s00220-017-2866-1 |
[4] |
Cao D M, Han P G. Inhomogeneous critical nonlinear Schrödinger equations with a harmonic potential. J Math Phys, 2010, 51(4): 043505
doi: 10.1063/1.3371246 |
[5] | Cazenave T. Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics vol. 10. Providence: American Mathematical Society, 2003 |
[6] |
Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S. Theory of Bose-Einstein condensation in trapped gases. Rev Modern Phys, 1999, 71(3): 463-512
doi: 10.1103/RevModPhys.71.463 |
[7] |
Feng B H. On the blow-up solutions for the nonlinear Schrödinger equations with combined power-type nonlinearities. J Evol Equ, 2018, 18(1): 203-220
doi: 10.1007/s00028-017-0397-z |
[8] | Fukuizumi R, Ohta M. Stability of standing waves for nonlinear Schrödinger equations with potentials. Differential Integral Equations, 2003, 16(1): 111-128 |
[9] |
Glassey R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J Math Phys, 1977, 18(9): 1794-1797
doi: 10.1063/1.523491 |
[10] |
Gou T X. Existence and orbital stability of standing waves to nonlinear Schrödinger system with partial confinement. J Math Phys, 2018, 59(7): 071508
doi: 10.1063/1.5028208 |
[11] | Hmidi T, Keraani S. Blowup theory for the critical nonlinear Schrödinger equations revisited. Int Math Res Notices, 2005, 46: 2815-2828 |
[12] |
Jia H F, Li G B, Luo X. Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement. Discrete Contin Dyn Syst, 2020, 40(5): 2739-2766
doi: 10.3934/dcds.2020148 |
[13] |
Kwong M K. Uniqueness of positive solutions of $\Delta u-u+u^p = 0$ in $\mathbf{R}^N$. Arch Ration Mech Anal, 1989, 105: 243-266
doi: 10.1007/BF00251502 |
[14] | Li X G, Zhang J. Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential. Differential Integral Equations, 2006, 19(7): 761-771 |
[15] |
Liu Q, Zhou Y Q, Zhang J, Zhang W N. Sharp condition of global existence for nonlinear Schrödinger equation with a harmonic potential. Applied Mathematics and Computation, 2006, 177(2): 482-487
doi: 10.1016/j.amc.2005.11.024 |
[16] | Liu Z X. On a class of inhomogeneous, energy-critical, focusing, nonlinear Schrödinger equations. Acta Math Sci, 2013, 33B(6): 1522-1530 |
[17] | Merle F. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math J, 1993, 69(2): 427-454 |
[18] | Merle F. Nonexistence of minimal blow-up solutions of equations i$u_t = -\Delta u-k(x)|u|^{\frac{4}{N}}u$ in $\mathbf{R}^N$. Ann Inst Henri Poincare, 1996, 64(1): 33-85 |
[19] |
Merle F, Raphaël P. The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann Math, 2005, 161(1): 157-222
doi: 10.4007/annals |
[20] |
Ogawa T, Tsutsumi Y. Blow-up of $H^1$ solution for the nonlinear Schrödinger equation. J Differential Equations, 1991, 92(2): 317-330
doi: 10.1016/0022-0396(91)90052-B |
[21] |
Oh Y G. Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials. J Differential Equations, 1989, 81(2): 255-274
doi: 10.1016/0022-0396(89)90123-X |
[22] | Ohta M. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Commun Pure Appl Anal, 2018, 17(4): 1671-1680 |
[23] |
Ohta M. Strong instability of standing waves for nonlinear Schrödinger equations with harmonic potential. Funkcial Ekvac, 2018, 61(1): 135-143
doi: 10.1619/fesi.61.135 |
[24] |
Pan J J, Zhang J. Mass concentration for nonlinear Schrödinger equation with partial confinement. J Math Anal Appl, 2020, 481(2): 123484
doi: 10.1016/j.jmaa.2019.123484 |
[25] |
Pang P Y H, Tang H Y, Wang Y D. Blow-up solutions of inhomogeneous nonlinear Schrödinger equations. Calculus Var Partial Differ Equ, 2006, 26(2): 137-169
doi: 10.1007/s00526-005-0362-5 |
[26] | Pitaevskii L, Stringari S. Bose-Einstein Condensation. International Series of Monographs on Physics, 116. Oxford: Oxford University Press, 2003 |
[27] |
Shu J, Zhang J. Sharp criterion of global existence for a class of nonlinear Schrödinger equation with critical exponent. Applied Mathematics and Computation, 2006, 182(2) : 1482-1487
doi: 10.1016/j.amc.2006.05.036 |
[28] |
Shu J, Zhang J. Sharp criterion of global existence for nonlinear Schrödinger equation with a harmonic potential. Acta Mathematica Sinica, English Series, 2009, 25(4): 537-544
doi: 10.1007/s10114-009-7473-4 |
[29] |
Strauss W A. Existence of solitary waves in higher dimensions. Comm Math Phys, 1977, 55: 149-162
doi: 10.1007/BF01626517 |
[30] | Sulem C, Sulem P. The Nonlinear Schrödinger Equation:Self-Focusing and Wave Collapse. New York: Springer-Verlag, 1999 |
[31] |
Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm Math Phys, 1983, 87: 567-576
doi: 10.1007/BF01208265 |
[32] |
Weinstein M I. On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations. Comm Partial Differential Equations, 1986, 11: 545-565
doi: 10.1080/03605308608820435 |
[33] |
Zhang J. Stability of attractive Bose-Einstein condensates. J Stat Phys, 2000, 101: 731-746
doi: 10.1023/A:1026437923987 |
[34] |
Zhang J. Sharp threshold for blow-up and global existence in nonlinear Schrödinger equations under a harmonic potential. Comm Partial Differential Equations, 2005, 30(10): 1429-1443
doi: 10.1080/03605300500299539 |
[35] |
Zhang J. Sharp threshold of global existence for nonlinear Schrödinger equation with partial confinement. Nonlinear Anal, 2020, 196: 111832
doi: 10.1016/j.na.2020.111832 |
[36] | Zhang M Y, Ahmed M S. Sharp conditions of global existence for nonlinear Schrödinger equation with a harmonic potential. Adv Nonlinear Anal, 2019, 9(1): 882-894 |
[37] |
Zhu S H, Zhang J, Li X G. Limiting profile of blow-up solutions for the Gross-Pitaevskii equation. Science China Mathematics, 2009, 52(5): 1017-1030
doi: 10.1007/s11425-008-0140-x |
[1] | Shen Xuhui,Ding Juntang. Blow-Up Conditions of Porous Medium Systems with Gradient Source Terms and Nonlinear Boundary Conditions [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1417-1426. |
[2] | Ouyang Baiping. Blow-up of Solutions to the Euler-Poisson-Darboux-Tricomi Equation with a Nonlinear Memory Term [J]. Acta mathematica scientia,Series A, 2023, 43(1): 169-180. |
[3] | Li Deke, Wang Qingxuan. Limit Behavior of Mass Critical Inhomogeneous Schrödinger Equation at the Threshold [J]. Acta mathematica scientia,Series A, 2023, 43(1): 123-131. |
[4] | Feng Meiqiang, Zhang Xuemei. On the Optimal Global Estimates of Boundary Blow-up Solutions to the Monge-Ampère Equation [J]. Acta mathematica scientia,Series A, 2023, 43(1): 181-202. |
[5] | Zhen Qiu,Guangwu Wang. Blow-Up of the Smooth Solutions to the Quantum Navier-Stokes-Landau-Lifshitz Equations [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1074-1088. |
[6] | Lianfeng Yang,Xiaoyu Zeng. Existence and Blow-Up Behavior of Ground State Solutions for Pseudo-Relativistic Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2022, 42(1): 165-175. |
[7] | Yuge Du,Shuying Tian. Existence and Blow-Up of a Parabolic Equation with Logarithmic Nonlinearity [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1816-1829. |
[8] | Jingran He,Helin Guo,Wenqing Wang. A p-Laplace Eigenvalue Problem with Coercive Potentials [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1323-1332. |
[9] | Hui Yang,Yuzhu Han. Blow-Up Properties of Solutions to a Class of Parabolic Type Kirchhoff Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1333-1346. |
[10] | Baiping Ouyang,Shengzhong Xiao. Nonexistence of Global Solutions for a Semilinear Double-Wave Equation with a Nonlinear Memory Term [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1372-1381. |
[11] | Shoufu Tian. On the Behavior of the Solution of a Weakly Dissipative Modified Two-Component Dullin-Gottwald-Holm System [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1204-1223. |
[12] | Xiaoli Han. Multiple Pertubations to a Quasilinear Schrödinger Equation [J]. Acta mathematica scientia,Series A, 2020, 40(4): 869-881. |
[13] | Yadong Zheng,Zhongbo Fang. Blow-Up Analysis for a Weakly Coupled Reaction-Diffusion System with Gradient Sources Terms and Time-Dependent Coefficients [J]. Acta mathematica scientia,Series A, 2020, 40(3): 735-755. |
[14] | Danni Ma,Zhongbo Fang. Blow-Up Phenomenon for a Coupled Diffusion System with Exponential Reaction Terms and Space-Dependent Coefficients [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1456-1475. |
[15] | Siqian Qin,Zhengqiu Ling,Zewen Zhou. Some Methods for Determining the Lower Bound of Blow-up Time in a Parabolic Problem and Effectiveness Analysis [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1033-1040. |
|