Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (5): 1333-1340.

Previous Articles     Next Articles

The Reproducing Kernel of Bergman Space and the Eigenvectors of Toeplitz Operator

Ding Xuanhao1,2(),Hou Lin1(),Li Yongning1,2,*()   

  1. 1School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067
    2Chongqing Key Laboratory of Social Economy and Applied Statistics, Chongqing 400067
  • Received:2022-09-25 Revised:2023-04-10 Online:2023-10-26 Published:2023-08-09
  • Contact: Yongning Li E-mail:dingxuanhao@ctbu.edu.cn;houlin202108@163.com;yongningli@ctbu.edu.cn
  • Supported by:
    NSFC(11871122);NSFC(12101092);Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX1045);Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0318);Chongqing Municipal Funds(KJQN202100822);Chongqing Technology and Business University Fund(2053010);Chongqing Technology and Business University-Level Projects(yjscxx2022-112-186)

Abstract:

In the Bergman space, it is well-known that $ T_{\varphi}K_{z}=\varphi(z)K_{z} $ for $ \varphi\in \overline{H^{\infty}} $, that is, $ K_{z} $ is the eigenvector of $ T_{\varphi} $ corresponding the eigenvalue $ \varphi(z) $, where $ K_{z} $ is the reproducing kernel of Bergman space. Conversely, if $ \varphi $ is a bounded harmonic function and if there is $ z\in \mathbb{D} $ (or for every $ z\in\mathbb{D} $), $ K_{z} $ is a eigenvector of $ T_{\varphi} $, whether there must be $ \varphi\in \overline{H^{\infty}} $ ? In view of the above questions, in this paper we give a complete characterization of the Toeplitz operator with the bounded harmonic symbol which have the reproducing kernels $ K_{z} $ as their eigenvectors. Moreover, we partially describe the Toeplitz operators with the bounded harmonic symbol whose eigenvalues are all $ \varphi(z) (z\in \mathbb{D}) $.

Key words: Bergman space, Reproducing kernel, Toeplitz operator, Eigenvectors

CLC Number: 

  • O177.1
Trendmd