Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (4): 1311-1320.
Received:
2022-05-23
Revised:
2022-11-19
Online:
2023-08-26
Published:
2023-07-03
CLC Number:
Zhang Haiqun. Bounded Rationality and Stability of Weakly Efficient Nash Equilibria for a Class of Population Games[J].Acta mathematica scientia,Series A, 2023, 43(4): 1311-1320.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Nash J. Equilibrium points in n-person games. P Natl Acad Sci, 1950$a$, 36: 48-49
doi: 10.1073/pnas.36.1.48 |
[2] | Nash J. Noncooperative Games. Princeton: Princeton University, 1950 |
[3] | Sandholm W H. Population Games and Evolutionary Dynamics. Cambridge: MIT Press, 2010 |
[4] |
Yang G H, Yang H. Stability of weakly Pareto-Nash equilibria and Pareto-Nash equlibria for multiobjective population games. Set-Valued Var Anal, 2017, 25(2): 427-439
doi: 10.1007/s11228-016-0391-6 |
[5] |
Yang Z, Zhang H Q. Essential stability of cooperative equilibria for population games. Optim Lett, 2019, 13: 1573-1582
doi: 10.1007/s11590-018-1303-5 |
[6] |
Kajii A. A generalization of Scarf's theorem: an $\alpha$-core existence theorem without transitivity or completeness. J Econ Theory, 1992, 56: 194-205
doi: 10.1016/0022-0531(92)90076-T |
[7] |
Lahkar R, Sandholm W H. The projection dynamic and the geometry of population games. Games Econ Behav, 2008, 64(2): 565-590
doi: 10.1016/j.geb.2008.02.002 |
[8] |
Sandholm W H. Large population potential games. J Econ Theory, 2009, 144(4): 1710-1725
doi: 10.1016/j.jet.2009.02.004 |
[9] |
Reluga T C, Galvani A P. A general approach for population games with application to vaccination. Mathematical Biosciences, 2011, 230(2): 67-78
doi: 10.1016/j.mbs.2011.01.003 pmid: 21277314 |
[10] | 王明婷, 杨光惠. 群体博弈弱Nash均衡的存在性与稳定性. 数学的实践与认识, 2021, 51(15): 187-193 |
Wang M T, Yang G H. The existence and generic stability of weak Nash equilibria for population games. Mathematics in Practice and Theory, 2021, 51(15): 187-193 | |
[11] | 陈华鑫, 贾文生. 群体博弈的逼近定理及通有收敛性. 数学物理学报, 2021, 41A(5): 1566-1573 |
Chen H X, Jia W S. Approximation theorem and general convergence of population games. Acta Math Sci, 2021, 41A(5): 1566-1573 | |
[12] |
Yang Z, Meng D W, Wang A Q. On the existence of ideal Nash equilibria in discontinuous games with infinite criteria. Oper Res Lett, 2017, 45: 362-365
doi: 10.1016/j.orl.2017.05.004 |
[13] |
Anderlini L, Canning D. Structural stability implies robustness to bounded rationality. J Econ Theory, 2001, 101(2): 395-422
doi: 10.1006/jeth.2000.2784 |
[14] |
Yu C, Yu J. On structural stability and robustness to bounded rationality. Nonlinear Anal-TMA, 2006, 65(3): 583-592
doi: 10.1016/j.na.2005.09.039 |
[15] |
Yu C, Yu J. Bounded ratinality in multiobjective games. Nonlinear Anal-TMA, 2007, 67: 930-937
doi: 10.1016/j.na.2006.06.050 |
[16] |
王能发. 有限理性下不确定性博弈均衡的稳定性. 应用数学学报, 2017, 40(4): 562-572
doi: 10.12387/C2017047 |
Wang N F. The stability of equilibrium point for uncertain game under bounded rationality. Acta Math Appl Sin, 2017, 40(4): 562-572
doi: 10.12387/C2017047 |
|
[17] | 杨光惠, 杨辉, 向淑文. 有限理性下参数最优化问题解的稳定性. 运筹学学报, 2016, 20(4): 1-10 |
Yang G H, Yang H, Xiang S W. Stability of solutions to parametric optimization problems under bounded rationality. Operations Research Transactions, 2016, 20(4): 1-10 | |
[18] |
俞建. 几类考虑有限理性平衡问题解的稳定性. 系统科学与数学, 2009, 29: 999-1008
doi: 10.12341/jssms08438 |
Yu J. Bounded rationality and stability of solution of some equilibrium problems. Journal of Systems Science and Mathematical Sciences, 2009, 29: 999-1008
doi: 10.12341/jssms08438 |
|
[19] | 俞建. 博弈论与非线性分析续论. 北京: 科学出版社, 2011 |
Yu J. Game Theory and Nonlinear Analysis (Continued). Beijing: Science Press, 2011 | |
[20] |
Deguire P, Tan K K, Yuan X Z. The study of maximal elements, fixed points for $L_{s}$-majorized mappings and their applications to minimax and variational inequalities in product topological spaces. Nonlinear Analysis, 1999, 37(3): 933-951
doi: 10.1016/S0362-546X(98)00084-4 |
[1] | Wang Chun,Yang Hui,GuangYang Hui,Wang Guoling. Approximation Theorem of Population Games and Multi-objective Population Games [J]. Acta mathematica scientia,Series A, 2023, 43(3): 913-920. |
[2] | Wu Wenjun,Yang Guanghui,Fang Caiya,Yang Hui. Generic Stability of Cooperative Equilibria for Leader-Follower Population Games [J]. Acta mathematica scientia,Series A, 2023, 43(3): 921-929. |
[3] | Mingting Wang,Guanghui Yang,Hui Yang. Stability of Weak NS Equilibria for Population Games with Uncertain Parameters Under Bounded Rationality [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1812-1825. |
[4] | Huaxin Chen,Wensheng Jia. Approximation Theorem and General Convergence of Population Games [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1566-1573. |
[5] | Xiaoling Qiu,Wensheng Jia. An Approximation Theorem of Variational Inequalities Under Bounded Rationality [J]. Acta mathematica scientia,Series A, 2019, 39(4): 730-737. |
[6] | Xia Wenhua;Deng Feiqi;Luo Yiping. Global Exponential Stability of Neural Networks’ Periodic Solution Involving Finite Distributed Delays with Periodic Inputs [J]. Acta mathematica scientia,Series A, 2009, 29(1): 170-178. |
[7] | Zhang Jing;Zhang Luming;Chen Juan. A Numerical Simulation Method of Nonlinear Schrodinger equation [J]. Acta mathematica scientia,Series A, 2007, 27(6): 1111-1117. |
[8] | FU Chu-Li, QIU Chun-Yu, ZHAO Hua. A Fourier Regularization Method with Holder Stability for Solving a General Sideways Parabolic Equation [J]. Acta mathematica scientia,Series A, 2005, 25(6): 806-810. |
[9] | YUAN San-Ling, MA Zhi-En, HAN Mao-An. Global Stability on an SIS Epidemic Model with Time Delays [J]. Acta mathematica scientia,Series A, 2005, 25(3): 349-356. |
[10] | Shen Gengcheng Gao Guozhu Li Lifeng. Asymptotic Stability Perturbing Scalar Functional Differential Equations with Unbounded Delay [J]. Acta mathematica scientia,Series A, 1999, 19(5): 493-500. |
[11] | Feng Chunhua Yang Xitao. total asymptotic stability behavior of solutions for almost periodic system of functional differential equations of neutral type [J]. Acta mathematica scientia,Series A, 1999, 19(4): 448-455. |