[1] |
Kurihura S. Large-amplitude quasi-solitons in superfluid films. J Phys Soc Japan, 1981, 50: 3262-3267
doi: 10.1143/JPSJ.50.3262
|
[2] |
Laedke E W, Spatschek K H, Stenflo L. Evolution theorem for a class of perturbed envelope soliton solutions. J Math Phys, 1983, 24: 2764-2767
doi: 10.1063/1.525675
|
[3] |
Quispel G R W, Capel H W. Equation of motion for the Heisenberg spin chain. Phys A, 1982, 110: 41-80
doi: 10.1016/0378-4371(82)90104-2
|
[4] |
Brüll L. On solitary waves for nonlinear Schrödinger equations in higher dimensions. Appl Anal, 1986, 22: 213-225
doi: 10.1080/00036818608839619
|
[5] |
Takeno S, Homma S. Classical planar heisenberg ferromagnet, complex scalar field and nonlinear excitations. Prog Theor Phys, 1981, 65: 172-189
doi: 10.1143/PTP.65.172
|
[6] |
Bass F G, Nasanov N N. Nonlinear electromagnetic spin waves. Phys Rep, 1990, 189: 165-223
doi: 10.1016/0370-1573(90)90093-H
|
[7] |
Brüll L, Lange H, de Jager E. Stationary, oscillatory and solitary waves type solutions of singular nonlinear Schrödinger equations. Math Methods Appl Sci, 1986, 8: 559-575
doi: 10.1002/mma.v8:1
|
[8] |
Wang Y J. Solitary solutions for a class of Schödinger equations in $\mathbb{R} ^{3}$. Z Angew Math Phys, 2016, 67: 88
doi: 10.1007/s00033-016-0679-2
|
[9] |
Cheng Y, Wei J. Fast and slow decaying solution for $H^1$-supercriti-cal quasililnear Schrödinger equation. Calc Var Partial Differ Equ, 2019, 58: 144
doi: 10.1007/s00526-019-1594-0
|
[10] |
Tu K, Cheng Y. On a class of quasilinear Schrodinger equations with the supercritical growth. J Math Phys, 2021, 62: 121508
doi: 10.1063/5.0072312
|
[11] |
Dávila J, del Pino M, Musso M, Wei J. Standing waves for supercritical nonlinear Schrödinger equations. J Differ Equations, 2007, 236: 164-198
doi: 10.1016/j.jde.2007.01.016
|