Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (3): 808-828.
Previous Articles Next Articles
Received:
2022-05-12
Revised:
2023-02-06
Online:
2023-06-26
Published:
2023-06-01
Contact:
Heping Ma
E-mail:ncxia@shu.edu.cn;hpma@shu.edu.cn
Supported by:
CLC Number:
Niu Cuixia,Ma Heping. A Leap-Frog Crank-Nicolson Multidomain Legendre-Tau Collocation Spectral Method for 2D Nonlinear Maxwell's Equations in Inhomogeneous Media[J].Acta mathematica scientia,Series A, 2023, 43(3): 808-828.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Taflove A, Hagness S C. Computational Electrodynamics:the Finite-Difference Time-Domain Method. Boston: Artech House, 2000 |
[2] | Cohen G C. Higher-Order Numerical Methods for Transient Wave Equations, Scientific Computation. Berlin: Springer-Verlag, 2002 |
[3] | Bondeson A, Rylander T, Ingelström P. Computational Electromagnetics. New York: Springer, 2005 |
[4] | Yee K S. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Transactions on Antennas & Propagation, 1966, 14(3): 302-307 |
[5] |
Slodička M. Nonlinear diffusion in type-II superconductors. J Comput Appl Math, 2008, 215(2): 568-576
doi: 10.1016/j.cam.2006.03.055 |
[6] |
Gruner G, Zawadowski A, Chaikin P. Nonlinear conductivity and noise due to charge-density-wave depinning in nbse3. Physical Review Letters, 1981, 46(7): 511-515
doi: 10.1103/PhysRevLett.46.511 |
[7] |
Yin H M. On a singular limit problem for nonlinear Maxwell's equations. J Differential Equations, 1999, 156(2): 355-375
doi: 10.1006/jdeq.1998.3608 |
[8] |
Jochmann F. Asymptotic behavior of the electromagnetic field for a micromagnetism equation without exchange energy. SIAM J Math Anal, 2005, 37(1): 276-290
doi: 10.1137/S0036141004443324 |
[9] |
Yin H M. Existence and regularity of a weak solution to Maxwell's equations with a thermal effect. Math Methods Appl Sci, 2006, 29(10): 1199-1213
doi: 10.1002/(ISSN)1099-1476 |
[10] |
Ferreira M V, Buriol C. Orthogonal decomposition and asymptotic behavior for nonlinear Maxwell's equations. J Math Anal Appl, 2015, 426(1): 392-405
doi: 10.1016/j.jmaa.2014.12.071 |
[11] |
Durand S, Slodička M. Convergence of the mixed finite element method for Maxwell's equations with nonlinear conductivity. Math Methods Appl Sci, 2012, 35(13): 1489-1504
doi: 10.1002/mma.v35.13 |
[12] | Yao C, Lin Y, Wang C, Kou Y. A third order linearized BDF scheme for Maxwell's equations with nonlinear conductivity using finite element method. Int J Numer Anal Model, 2017, 14(4/5): 511-531 |
[13] |
Bokil V A, Cheng Y, Jiang Y, et al. High spatial order energy stable FDTD methods for Maxwell's equations in nonlinear optical media in one dimension. J Sci Comput, 2018, 77(1): 330-371
doi: 10.1007/s10915-018-0716-8 |
[14] |
Huang Y, Li J, He B. A time-domain finite element scheme and its analysis for nonlinear Maxwell's equations in Kerr media. J Comput Phys, 2021, 435: 110259
doi: 10.1016/j.jcp.2021.110259 |
[15] | Hesthaven J. High-order accurate methods in time-domain computational electromagnetics: A review. Advances in Imaging and Electron Physics, 2003, 127: 59-123 |
[16] |
Yefet A, Petropoulos P G. A staggered fourth-order accurate explicit finite differences scheme for the time-domain Maxwell's equations. J Comput Phys, 2001, 168(2): 286-315
doi: 10.1006/jcph.2001.6691 |
[17] |
Xie Z, Chan C H, Zhang B. An explicit fourth-order staggered finite-difference time-domain method for Maxwell's equations. J Comput Appl Math, 2002, 147(1): 75-98
doi: 10.1016/S0377-0427(02)00394-1 |
[18] |
Zhao S, Wei G W. High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces. J Comput Phys, 2004, 200(1): 60-103
doi: 10.1016/j.jcp.2004.03.008 |
[19] |
Chen Z, Du Q, Zou J. Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J Numer Anal, 2000, 37(5): 1542-1570
doi: 10.1137/S0036142998349977 |
[20] |
Cai W, Deng S. An upwinding embedded boundary method for Maxwell's equations in media with material interfaces: 2D case. J Comput Phys, 2003, 190(1): 159-183
doi: 10.1016/S0021-9991(03)00269-9 |
[21] |
Deng S. On the immersed interface method for solving time-domain Maxwell's equations in materials with curved dielectric interfaces. Comput Phys Comm, 2008, 179(11): 791-800
doi: 10.1016/j.cpc.2008.07.001 |
[22] |
Nguyen D D, Zhao S. Time-domain matched interface and boundary (MIB) modeling of Debye dispersive media with curved interfaces. J Comput Phys, 2014, 278: 298-325
doi: 10.1016/j.jcp.2014.08.038 |
[23] |
Zhang Y, Nguyen D D, Du K, et al. Time-domain numerical solutions of Maxwell interface problems with discontinuous electromagnetic waves. Adv Appl Math Mech, 2016, 8(3): 353-385
doi: 10.4208/aamm.2014.m811 |
[24] |
Li J, Shi C, Shu C W. Optimal non-dissipative discontinuous Galerkin methods for Maxwell's equations in Drude metamaterials. Comput Math Appl, 2017, 73(8): 1760-1780
doi: 10.1016/j.camwa.2017.02.018 |
[25] |
Yan S, Jin J M. A continuity-preserving and divergence-cleaning algorithm based on purely and damped hyperbolic Maxwell equations in inhomogeneous media. J Comput Phys, 2017, 334: 392-418
doi: 10.1016/j.jcp.2017.01.012 |
[26] |
Camargo L, López-Rodríguez B, Osorio M, Solano M. An HDG method for Maxwell's equations in heterogeneous media. Comput Methods Appl Mech Engrg, 2020, 368: 113178
doi: 10.1016/j.cma.2020.113178 |
[27] | Bernardi C, Maday Y. Spectral methods. Handbook of Numerical Analysis, 1997, 5: 209-485 |
[28] | Guo B Y. Spectral Methods and Their Applications. New Jersey: World Scientific Publishing Co, 1998 |
[29] |
Guo B Y, Shen J. Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval. Numer Math, 2000, 86(4): 635-654
doi: 10.1007/PL00005413 |
[30] | Guo B Y. Some Developments in Spectral Methods for Nonlinear Partial Differential Equations in Unbounded Domains//Gu C H, Hu H S, Li T. Differential Geometry and Related Topics. Singapore: World Science, 2002: 68-90 |
[31] | Shen J, Tang T. Spectral and High-order Methods with Applications. Mathematics Monograph Series. Beijing: Science Press, 2006 |
[32] |
Ma H. Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws. SIAM J Numer Anal, 1998, 35(3): 869-892
doi: 10.1137/S0036142995293900 |
[33] |
Ma H. Chebyshev-Legendre super spectral viscosity method for nonlinear conservation laws. SIAM J Numer Anal, 1998, 35(3): 893-908
doi: 10.1137/S0036142995293912 |
[34] |
Ma H, Sun W. Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation. SIAM J Numer Anal, 2001, 39(4): 1380-1394
doi: 10.1137/S0036142900378327 |
[35] |
Ma H, Qin Y, Ou Q. Multidomain Legendre-Galerkin Chebyshev-collocation method for one-dimensional evolution equations with discontinuity. Appl Numer Math, 2017, 111: 246-259
doi: 10.1016/j.apnum.2016.09.010 |
[36] |
Chan T F, Kerkhoven T. Fourier methods with extended stability intervals for the Korteweg-de Vries equation. SIAM J Numer Anal, 1985, 22(3): 441-454
doi: 10.1137/0722026 |
[37] |
Wu H, Ma H, Li H. Chebyshev-Legendre spectral method for solving the two-dimensional vorticity equations with homogeneous Dirichlet conditions. Numer Methods Partial Differential Equations, 2009, 25(3): 740-755
doi: 10.1002/num.v25:3 |
[38] | Shen J, Tang T, Wang L L. Spectral Methods: Algorithms, Analysis and Applications. Heidelberg: Springer, 2011 |
[39] | Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods: Fundamentals in Single Domains. Berlin: Springer-Verlag, 2006 |
[40] | Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Berlin: Springer, 2007 |
[41] |
Niu C, Ma H, Liang D. Energy-conserved splitting multidomain Legendre-Tau spectral method for two dimensional Maxwell's equations. J Sci Comput, 2022, 90(2): 77
doi: 10.1007/s10915-021-01744-0 |
[1] |
SHI Dong-Yang, YU Zhi-Yun.
Superclose and Superconvergence Analysis of a Low Order Nonconforming Mixed Finite Element Method for Stationary Stokes Equations with Damping [J]. Acta mathematica scientia,Series A, 2013, 33(4): 735-745. |
|