Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (3): 795-807.
Previous Articles Next Articles
Received:
2021-11-05
Revised:
2022-10-19
Online:
2023-06-26
Published:
2023-06-01
Contact:
Zhipeng Yang
E-mail:yangzhipeng326@163.com
Supported by:
CLC Number:
Yang Zhipeng. Critical Fujita Exponent and Blow-up Results for the Rockland Heat Equation[J].Acta mathematica scientia,Series A, 2023, 43(3): 795-807.
[1] | Ahmad B, Alsaedi A, Kirane M. Nonexistence of global solutions of some nonlinear space-nonlocal evolution equations on the {H}eisenberg group. Electron J Differential Equations, 2015, 10: 227 |
[2] |
Bekbolat B, Kassymov A, Tokmagambetov N. Blow-up of solutions of nonlinear heat equation with hypoelliptic operators on graded {L}ie groups. Complex Anal Oper Theory, 2019, 13(7): 3347-3357
doi: 10.1007/s11785-019-00940-z |
[3] | Fischer V, Ruzhansky M. Quantization on Nilpotent {L}ie Groups. Boston: Birkhäuser, 2016 |
[4] | Fujita H. On the blowing up of solutions of the {C}auchy problem for {ut=Δu+u1+α}. J Fac Sci Univ Tokyo Sect I, 1966, 13: 109-124 |
[5] | Hayakawa K. On nonexistence of global solutions of some semilinear parabolic differential equations. Proc Japan Acad, 1973, 49: 503-505 |
[6] |
Kassymov A, Tokmagambetov N, Torebek B. Nonexistence results for the hyperbolic-type equations on graded {L}ie groups. Bull Malays Math Sci Soc, 2020, 43(6): 4223-4243
doi: 10.1007/s40840-020-00919-6 |
[7] | Pascucci A. Semilinear equations on nilpotent {L}ie groups: global existence and blow-up of solutions. Matematiche (Catania), 1998, 53(2): 345-357 |
[8] |
Pohozaev S, Véron L. Nonexistence results of solutions of semilinear differential inequalities on the {H}eisenberg group. Manuscripta Math, 2000, 102(1): 85-99
doi: 10.1007/PL00005851 |
[9] |
Ruzhansky M, Suragan D. Layer potentials, {K}ac's problem, and refined {H}ardy inequality on homogeneous {C}arnot groups. Adv Math, 2017, 308: 483-528
doi: 10.1016/j.aim.2016.12.013 |
[10] | Sugitani S. On nonexistence of global solutions for some nonlinear integral equations. Osaka Math J, 1975, 12: 45-51 |
[11] |
Yang Z. Fujita exponent and nonexistence result for the {R}ockland heat equation. Appl Math Lett, 2021, 121: 107386
doi: 10.1016/j.aml.2021.107386 |
[1] | Changwang Xiao,Fei Guo. Global Existence and Blowup Phenomena for a Semilinear Wave Equation with Time-Dependent Damping and Mass in Exponentially Weighted Spaces [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1568-1589. |
[2] | Liu Yang,Zuicha Deng. An Inverse Initial Value Problem for Degenerate Parabolic Equations [J]. Acta mathematica scientia,Series A, 2020, 40(4): 891-903. |
[3] | Junjie Zhang,Shenzhou Zheng,Haiyan Yu. Lorentz Estimates for Nondivergence Parabolic Equations with Partially BMO Coefficients [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1405-1420. |
[4] | Junjun Wang,Xiaoxia Yang. Superconvergence Analysis of an H1-Galerkin Mixed Finite Element Method for Nonlinear Parabolic Equation [J]. Acta mathematica scientia,Series A, 2019, 39(4): 894-908. |
[5] | Chen Chuanjun, Zhang Xiaoyan, Zhao Xin. A Two-Grid Finite Volume Element Approximation for One-Dimensional Nonlinear Parabolic Equations [J]. Acta mathematica scientia,Series A, 2017, 37(5): 962-975. |
[6] | Ma Wenya, Zhang Qiaofu, Cui Junzhi. Global Existence for Some Quasi-Linear Parabolic Equations with Locally Arbitrary Growth and Memory [J]. Acta mathematica scientia,Series A, 2015, 35(5): 833-844. |
[7] | MI Yong-Sheng, MU Chun-Lai, WU Yun-Long. Global Existence and Blow-up of Solutions to a Doubly Degenerate Parabolic System with Nonlinear Boundary Conditions [J]. Acta mathematica scientia,Series A, 2014, 34(3): 626-637. |
[8] | LI Zhong-Ping, DU Wan-Juan, MU Chun-Lai. Critical Exponents of the Cauchy Problem for Nonlinear Diffusive Equations [J]. Acta mathematica scientia,Series A, 2013, 33(5): 966-976. |
[9] | LI Lei, SUN Ping, LUO Zhen-Dong. A New Mixed Finite Element Formulation and Error Estimates for Parabolic Equations [J]. Acta mathematica scientia,Series A, 2012, 32(6): 1158-1165. |
[10] | LIN Su-Rong. Singular Perturbation of a Class of Third Order |Partial Differential Equations under Limit Equation to be Mixed Type [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1579-1585. |
[11] | AN Jing, LUO Zhen-Dong. A Reduced Finite Difference Scheme Based on POD Bases and Posteriori Error Estimation for the Three Parabolic Equation [J]. Acta mathematica scientia,Series A, 2011, 31(3): 769-775. |
[12] | JIANG Chao-Xin, ZHENG Si-Ning. A Liouville-type Theorem for a Doubly Degenerate Parabolic Inequality [J]. Acta mathematica scientia,Series A, 2010, 30(3): 639-643. |
[13] | JIN Zheng-Meng, YANG Xiao-Ping. Existence and Uniqueness of Weak Solutions for a Fourth Order Regularized YK Equation [J]. Acta mathematica scientia,Series A, 2009, 29(5): 1265-1273. |
[14] | Shi Dong-yang, GONG Wei. High Accuracy Analysis of Fully Discrete Galerkin Approximations for Parabolic Equations on Anisotropic Meshes [J]. Acta mathematica scientia,Series A, 2009, 29(4): 898-911. |
[15] | LI Hong-Fang, FU Chu-Li, XIONG Xiang-Qiu, NA Nan. An Optimal Filtering Method for Solving a |Sideways Parabolic Equation [J]. Acta mathematica scientia,Series A, 2009, 29(2): 245-252. |
|