Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (6): 1898-1921.
Yuxin Zhang1,Wenting Hou1,Xuelin Zhou2,1,*(),Jiaofen Li1
Received:
2021-06-19
Online:
2022-12-26
Published:
2022-12-16
Contact:
Xuelin Zhou
E-mail:zhouxuelin0309@163.com
Supported by:
CLC Number:
Yuxin Zhang,Wenting Hou,Xuelin Zhou,Jiaofen Li. A Hybrid Algorithm for Solving Truncated Complex Singular Value Decomposition[J].Acta mathematica scientia,Series A, 2022, 42(6): 1898-1921.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
CT.(s) | IT. | Grad. | Obj. | CT.(s) | IT. | Grad. | Obj. | ||
Hybrid-Newton | 3.31 | 96/5 | 1.38 | -56.23 | 1.38 | 157/3 | 3.81 | -56.23 | |
Hybrid-Newton | 3.14 | 159/5 | 1.74 | -56.22 | 3.66 | 187/7 | 6.03 | -56.23 |
"
L | CT.(s) | IT. | L | CT.(s) | IT. | |||
1 | 0.75 | 130 | 1.78 | 1 | 0.49 | 123 | 2.45 | |
2 | 0.60 | 161 | 5.78 | 2 | 0.39 | 95 | 1.27 | |
3 | 0.53 | 140 | 3.82 | 3 | 0.29 | 72 | 5.67 | |
4 | 0.30 | 71 | 9.47 | |||||
5 | 0.33 | 86 | 3.49 | |||||
1 | 0.84 | 148 | 7.49 | 1 | 0.26 | 69 | 2.77 | |
2 | 0.75 | 142 | 5.82 | 2 | 0.50 | 129 | 5.91 | |
3 | 0.44 | 113 | 8.08 | 3 | 0.47 | 118 | 3.28 | |
4 | 0.49 | 132 | 4.50 | 4 | 0.63 | 147 | 9.80 | |
5 | 0.23 | 59 | 6.50 | 5 | 0.43 | 112 | 2.45 | |
6 | 0.59 | 149 | 1.24 | |||||
7 | 0.29 | 77 | 4.70 |
"
CT.(s) | IT. | Grad. | Obj. | CT.(s) | IT. | Grad. | Obj. | ||
Hybrid-Newton | 0.32 | 80/3 | 1.92 | -116.67 | 1.21 | 134/3 | 1.29 | -156.31 | |
Existing-RTR | 0.38 | 13 | 5.38 | -116.67 | 0.83 | 14 | 5.35 | -156.31 | |
Existing-RBFGS | 3.93 | 145 | 9.87 | -116.67 | 5.14 | 194 | 8.56 | -156.31 | |
OptStifelGBB | 0.06 | 199 | 8.87 | -116.67 | 0.16 | 284 | 2.14 | -156.31 | |
RCG-Cayley | 0.10 | 182 | 8.63 | -116.67 | 0.28 | 293 | 9.15 | -156.31 | |
Hybrid-Newton | 2.64 | 149/5 | 1.33 | -189.95 | 4.80 | 173/3 | 4.90 | -223.22 | |
Existing-RTR | 0.99 | 15 | 2.62 | -189.95 | 1.37 | 15 | 5.17 | -223.22 | |
Existing-RBFGS | 6.70 | 239 | 9.54 | -189.95 | 6.51 | 216 | 9.83 | -223.22 | |
OptStifelGBB | 0.37 | 396 | 4.04 | -189.95 | 0.47 | 430 | 9.49 | -223.22 | |
RCG-Cayley | 0.50 | 362 | 9.08 | -189.95 | 0.64 | 363 | 9.98 | -223.22 | |
Hybrid-Newton | 5.26 | 148/2 | 2.80 | -245.29 | 10.95 | 210/ 4 | 2.46 | -272.71 | |
Existing-RTR | 1.45 | 14 | 3.48 | -245.29 | 1.51 | 15 | 3.14 | -272.71 | |
Existing-RBFGS | 9.60 | 304 | 2.45 | -245.29 | 9.49 | 285 | 1.30 | -272.71 | |
OptStifelGBB | 0.61 | 408 | 3.60 | -245.29 | 0.75 | 423 | 8.00 | -272.71 | |
RCG-Cayley | 0.84 | 406 | 7.70 | -245.29 | 1.15 | 471 | 8.49 | -272.71 | |
Hybrid-Newton | 16.85 | 159/4 | 6.93 | -293.84 | 21.11 | 265/3 | 2.21 | -316.66 | |
Existing-RTR | 2.26 | 15 | 2.24 | -293.84 | 3.11 | 15 | 4.91 | -316.66 | |
Existing-RBFGS | 11.99 | 275 | 2.59 | -293.84 | 18.02 | 355 | 7.76 | -316.66 | |
OptStifelGBB | 0.89 | 408 | 8.12 | -293.84 | 2.62 | 587 | 9.07 | -316.66 | |
RCG-Cayley | 1.32 | 438 | 8.16 | -293.84 | 5.44 | 835 | 8.26 | -316.66 |
1 |
Hansen P C . Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank. SIAM Journal on Scientific and Statistical Computing, 1990, 11 (3): 503- 518
doi: 10.1137/0911028 |
2 |
Noschese S , Reichel L . A modified truncated singular value decomposition method for discrete ill-posed problems. Numerical Linear Algebra with Applications, 2014, 21 (6): 813- 822
doi: 10.1002/nla.1938 |
3 | 余景景, 刘芳, 焦李成等. 截断奇异值分解的生物发光断层成像重建问题. 西北大学学报(自然科学版), 2009, 39(5): 755-760 |
Yu J, Liu F, Jiao L, He X. Research on the reconstruction for bioluminescence tomography using truncated singular value decomposition method. Journal of Northwest University (Natural Science Edition), 2009, 39(5): 755-760 | |
4 | Doğu S , Akıncı M N , Çayören M , Akduman İ . Truncated singular value decomposition for through-the-wall microwave imaging application. IET Microwaves, Antennas & Propagation, 2019, 14 (4): 260- 267 |
5 | Francischello R , Geppi M , Flori A , et al. Application of low-rank approximation using truncated singular value decomposition for noise reduction in hyperpolarized 13C NMR spectroscopy. NMR in Biomedicine, 2021, 34 (5): e4285 |
6 | Sato H . Riemannian Optimization and Its Applications. Switzerland: Springer Nature, 2021 |
7 |
Sato H , Iwai T . A Riemannian optimization approach to the matrix singular value decomposition. SIAM Journal on Optimization, 2013, 23 (1): 188- 212
doi: 10.1137/120872887 |
8 | Sato H. Riemannian conjugate gradient method for complex singular value decomposition problem. 53rd IEEE Conference on Decision and Control, 2015, pages 5849-5854 |
9 | Sato H, Iwai T. A complex singular value decomposition algorithm based on the Riemannian Newton method[C]//52nd IEEE Conference on Decision and Control. Firenze: IEEE, 2013: 2972-2978 |
10 |
Aihara K , Sato H . A matrix-free implementation of Riemannian Newton's method on the Stiefel manifold. Optimization Letters, 2017, 11, 1729- 1741
doi: 10.1007/s11590-016-1090-9 |
11 |
Xu W W , Li W , Zhu L , Huang X P . The analytic solutions of a class of constrained matrix minimization and maximization problems with applications. SIAM Journal on Optimization, 2019, 29 (2): 1657- 1686
doi: 10.1137/17M1140777 |
12 | Wen Z , Yin W . A feasible method for optimization with orthogonality constraints. Mathematical Programming, 2013, 142 (1/2): 397- 434 |
13 | Absil P A , Mahony R , Sepulchre R . Optimization Algorithms on Matrix Manifolds. Princeton: Princeton University Press, 2008, |
14 |
Hu J , Liu X , Wen Z W , Yuan Y X . A brief introduction to manifold optimization. Journal of the Operations Research Society of China, 2020, 8 (2): 199- 248
doi: 10.1007/s40305-020-00295-9 |
15 | Absil P A, Mahony R, Trumpf J. An extrinsic look at the Riemannian Hessian[C]//International Conference on Geometric Science of Information. Berlin: Springer, 2013: 361-368 |
16 |
Henderson H V , Searle S R . The vec-permutation matrix, the vec operator and Kronecker products: A review. Linear and Multilinear Algebra, 1981, 9 (4): 271- 288
doi: 10.1080/03081088108817379 |
17 | Yuan S , Liao A , Lei Y . Least squares Hermitian solution of the matrix equation (AXB, CXD)=(E, F) with the least norm over the skew field of quaternions. Mathematical and Computer Modelling, 2008, 48 (1/2): 91- 100 |
18 | Saad Y . Iterative Methods for Sparse Linear Systems. Philadelphia: SIAM, 2003 |
19 | Boumal N , Mishra B , Absil P A , Sepulchre R . Manopt, a Matlab toolbox for optimization on manifolds. Journal of Machine Learning Research, 2014, 15 (1): 1455- 1459 |
20 |
Zhu X . A Riemannian conjugate gradient method for optimization on the Stiefel manifold. Computational Optimization and Applications, 2017, 67 (1): 73- 110
doi: 10.1007/s10589-016-9883-4 |
21 | Dai Y . A nonmonotone conjugate gradient algorithm for unconstrained optimization. Journal of System Science and Complexity, 2002, 15, 139- 145 |
22 | Li J F , Li W , Vong S W , et al. A Riemannian optimization approach for solving the generalized eigenvalue problem for nonsquare matrix pencils. Journal of Scientific Computing, 2020, 82 (3): 1- 43 |
[1] | GAO Xing-Hui, ZHOU Hai-Yun, GAO Gai-Liang. Hybrid Algorithms of Common Elements for Equilibrium Problems and Fixed Point Problems [J]. Acta mathematica scientia,Series A, 2011, 31(3): 720-728. |
|