| 1 | Fujita H . On the blowing up of solutions of the Cauchy problem for ut=Δu + u1+α. J Fac Sci Univ Tokyo Sect I, 1966, 13, 109- 124 |
| 2 | Hayakawa K . On nonexistence of global solutions of some semi-linear parabolic differential equations. Proceedings of the Japan Academy, 1973, 49 (7): 503- 505 |
| 3 | Kobayashi K , Sirao T , Tanaka H . On the growing up problem for semi-linear heat equations. Journal of the Mathematical Society of Japan, 1977, 29 (3): 407- 424 |
| 4 | Amour L , Ben-Artzi M . Global existence and decay for viscous Hamilton-Jacobi equations. Nonlinear Analysis Theory Methods and Applications, 1998, 31 (5): 621- 628 |
| 5 | Laurencot P , Souplet P . On the growth of mass for a viscous Hamilton-Jacobi equation. Journal d'Analyse Mathématique, 2003, 89 (1): 367- 383 |
| 6 | Gilding B H . The Cauchy problem for ut=Δu +|▽u|q, large-time behaviour. Journal de Mathématiques Pures et Appliquées, 2005, 84 (6): 753- 785 |
| 7 | Kato T . Blow-up of solutions of some nonlinear hyperbolic equations. Communications on Pure and Applied Mathematics, 1980, 33 (4): 501- 505 |
| 8 | Strauss W A. Everywhere Defined Wave Operators//Crandall M G. Nonlinear Evolution Equations. New York: Academic Press, 1978: 85-102 |
| 9 | Glassey R T . Existence in the large for □u=F(u) in two space dimensions. Mathematische Zeitschrift, 1981, 178 (2): 233- 261 |
| 10 | Zhou Y . Cauchy problem for semilinear wave equations in four space dimensions with small initial data. J Differential Equations, 1995, 8 (2): 135- 144 |
| 11 | Georgiev V , Lindblad H , Sogge C D . Weighted Strichartz estimates and global existence for semilinear wave equations. American Journal of Mathematics, 1997, 119 (6): 1291- 1319 |
| 12 | Tataru D . Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation. Transactions of the American Mathematical Society, 2001, 353 (2): 795- 807 |
| 13 | Schaeffer J . The equation utt-Δu=|u|p for the critical value of p. Proc Roy Soc Edinburgh Sect A, 1985, 101 (1/2): 31- 44 |
| 14 | Zhou Y . Blow up of solutions to semilinear wave equations with critical exponent in high dimensions. Chinese Annals of Mathematics, 2007, 28 (2): 205- 212 |
| 15 | John F . Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Mathematica, 1979, 28 (1/3): 235- 268 |
| 16 | Glassey R T . Finite-time blow-up for solutions of nonlinear wave equations. Mathematische Zeitschrift, 1981, 177 (3): 323- 340 |
| 17 | Sideris T C . Nonexistence of global solutions to semilinear wave equations in high dimensions. Journal of Differential Equations, 1984, 52 (3): 378- 406 |
| 18 | Voroshilov A A , Kilbas A A . The cauchy problem for the diffusion-wave equation with the caputo partial derivative. Differential Equations, 2006, 42 (5): 638- 649 |
| 19 | Zhang Q , Sun H . The blow-up and global existence of solutions of cauchy problems for a time fractional diffusion equation. Topological Methods in Nonlinear Analysis, 2015, 46 (1): 69- 92 |
| 20 | D'Abbicco M , Ebert M R , Picon T H . The critical exponent(s) for the semilinear fractional diffusive equation. Journal of Fourier Analysis and Applications, 2019, 25 (3): 696- 731 |
| 21 | Duong P T , Mezadek M K , Reissig M . Global existence for semi-linear structurally damped σ-evolution models. Journal of Mathematical Analysis and Applications, 2015, 431 (1): 569- 596 |
| 22 | Runst T , Sickel W . Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. New York: Walter de Gruyter, 1996 |
| 23 | Kilbas A A , Srivastava H M , Trujillo J J . Theory and Applications of Fractional Differential Equations. New York: Elsevier Science Inc, 2006 |
| 24 | 肖常旺, 郭飞. 一类半线性波动方程的适定性. 数学物理学报, 2020, 40A (6): 1568- 1589 |
| 24 | Xiao C W , Guo F . Global existence and blowup phenomena for a semilinear wave equation with time-dependent damping and mass in exponentially weighted spaces. Acta Math Sci, 2020, 40A (6): 1568- 1589 |
| 25 | 李大潜, 周忆. 非线性波动方程. 上海: 上海科学技术出版社, 2016 |
| 25 | Li D Q , Zhou Y . Nonlinear Wave Equations. Shanghai: Shanghai Scientific and Technical Publisher, 2016 |