Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (6): 1705-1718.
Previous Articles Next Articles
Xinhai He(),Mei Liu(),Han Yang*()
Received:
2022-03-15
Online:
2022-12-26
Published:
2022-12-16
Contact:
Han Yang
E-mail:xinhaihe@my.swjtu.edu.cn;meiliu@my.swjtu.edu.cn;hanyang95@263.net
Supported by:
CLC Number:
Xinhai He,Mei Liu,Han Yang. Existence and Uniqueness of Global Solutions for a Class of Semilinear Time Fractional Diffusion-Wave Equations[J].Acta mathematica scientia,Series A, 2022, 42(6): 1705-1718.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Fujita H . On the blowing up of solutions of the Cauchy problem for ut=Δu + u1+α. J Fac Sci Univ Tokyo Sect I, 1966, 13, 109- 124 |
2 | Hayakawa K . On nonexistence of global solutions of some semi-linear parabolic differential equations. Proceedings of the Japan Academy, 1973, 49 (7): 503- 505 |
3 | Kobayashi K , Sirao T , Tanaka H . On the growing up problem for semi-linear heat equations. Journal of the Mathematical Society of Japan, 1977, 29 (3): 407- 424 |
4 | Amour L , Ben-Artzi M . Global existence and decay for viscous Hamilton-Jacobi equations. Nonlinear Analysis Theory Methods and Applications, 1998, 31 (5): 621- 628 |
5 |
Laurencot P , Souplet P . On the growth of mass for a viscous Hamilton-Jacobi equation. Journal d'Analyse Mathématique, 2003, 89 (1): 367- 383
doi: 10.1007/BF02893088 |
6 |
Gilding B H . The Cauchy problem for ut=Δu +|▽u|q, large-time behaviour. Journal de Mathématiques Pures et Appliquées, 2005, 84 (6): 753- 785
doi: 10.1016/j.matpur.2004.11.003 |
7 |
Kato T . Blow-up of solutions of some nonlinear hyperbolic equations. Communications on Pure and Applied Mathematics, 1980, 33 (4): 501- 505
doi: 10.1002/cpa.3160330403 |
8 | Strauss W A. Everywhere Defined Wave Operators//Crandall M G. Nonlinear Evolution Equations. New York: Academic Press, 1978: 85-102 |
9 |
Glassey R T . Existence in the large for □u=F(u) in two space dimensions. Mathematische Zeitschrift, 1981, 178 (2): 233- 261
doi: 10.1007/BF01262042 |
10 | Zhou Y . Cauchy problem for semilinear wave equations in four space dimensions with small initial data. J Differential Equations, 1995, 8 (2): 135- 144 |
11 |
Georgiev V , Lindblad H , Sogge C D . Weighted Strichartz estimates and global existence for semilinear wave equations. American Journal of Mathematics, 1997, 119 (6): 1291- 1319
doi: 10.1353/ajm.1997.0038 |
12 | Tataru D . Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation. Transactions of the American Mathematical Society, 2001, 353 (2): 795- 807 |
13 | Schaeffer J . The equation utt-Δu=|u|p for the critical value of p. Proc Roy Soc Edinburgh Sect A, 1985, 101 (1/2): 31- 44 |
14 |
Zhou Y . Blow up of solutions to semilinear wave equations with critical exponent in high dimensions. Chinese Annals of Mathematics, 2007, 28 (2): 205- 212
doi: 10.1007/s11401-005-0205-x |
15 | John F . Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Mathematica, 1979, 28 (1/3): 235- 268 |
16 |
Glassey R T . Finite-time blow-up for solutions of nonlinear wave equations. Mathematische Zeitschrift, 1981, 177 (3): 323- 340
doi: 10.1007/BF01162066 |
17 |
Sideris T C . Nonexistence of global solutions to semilinear wave equations in high dimensions. Journal of Differential Equations, 1984, 52 (3): 378- 406
doi: 10.1016/0022-0396(84)90169-4 |
18 |
Voroshilov A A , Kilbas A A . The cauchy problem for the diffusion-wave equation with the caputo partial derivative. Differential Equations, 2006, 42 (5): 638- 649
doi: 10.1134/S0012266106050041 |
19 |
Zhang Q , Sun H . The blow-up and global existence of solutions of cauchy problems for a time fractional diffusion equation. Topological Methods in Nonlinear Analysis, 2015, 46 (1): 69- 92
doi: 10.12775/TMNA.2015.038 |
20 | D'Abbicco M , Ebert M R , Picon T H . The critical exponent(s) for the semilinear fractional diffusive equation. Journal of Fourier Analysis and Applications, 2019, 25 (3): 696- 731 |
21 | Duong P T , Mezadek M K , Reissig M . Global existence for semi-linear structurally damped σ-evolution models. Journal of Mathematical Analysis and Applications, 2015, 431 (1): 569- 596 |
22 | Runst T , Sickel W . Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. New York: Walter de Gruyter, 1996 |
23 | Kilbas A A , Srivastava H M , Trujillo J J . Theory and Applications of Fractional Differential Equations. New York: Elsevier Science Inc, 2006 |
24 |
肖常旺, 郭飞. 一类半线性波动方程的适定性. 数学物理学报, 2020, 40A (6): 1568- 1589
doi: 10.3969/j.issn.1003-3998.2020.06.012 |
Xiao C W , Guo F . Global existence and blowup phenomena for a semilinear wave equation with time-dependent damping and mass in exponentially weighted spaces. Acta Math Sci, 2020, 40A (6): 1568- 1589
doi: 10.3969/j.issn.1003-3998.2020.06.012 |
|
25 | 李大潜, 周忆. 非线性波动方程. 上海: 上海科学技术出版社, 2016 |
Li D Q , Zhou Y . Nonlinear Wave Equations. Shanghai: Shanghai Scientific and Technical Publisher, 2016 |
[1] | Su Xiao, Wang Shubin. The Cauchy Problem for the Forth Order p-Generalized Benney-Luke Equation [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1744-1753. |
[2] | Chunlei He,Zihui Liu. Symmetries and Global Solutions for a Class of Hyperbolic Mean Curvature Flow [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1089-1102. |
[3] | Ning-An LAI, Wei XIANG, Yi ZHOU. GLOBAL INSTABILITY OF MULTI-DIMENSIONAL PLANE SHOCKS FOR ISOTHERMAL FLOW [J]. Acta mathematica scientia,Series A, 2022, 42(3): 887-902. |
[4] | Hongwu Zhang. One Regularization Method for a Cauchy Problem of Semilinear Elliptic Equation [J]. Acta mathematica scientia,Series A, 2022, 42(1): 45-57. |
[5] | Xiangying Chen,Guowang Chen. Cauchy Problem for a Generalized System of Coupled Boussinesq Type Equations Arising from Nonlinear Layered Lattice Model [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1552-1567. |
[6] | Changwang Xiao,Fei Guo. Global Existence and Blowup Phenomena for a Semilinear Wave Equation with Time-Dependent Damping and Mass in Exponentially Weighted Spaces [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1568-1589. |
[7] | Jun Wang,Tianlu Wang,Yanhua Wen,Xianfeng Zhou. Global Solutions of IVP for N-Dimensional Nonlinear Fractional Differential Equations with Delay [J]. Acta mathematica scientia,Series A, 2018, 38(5): 903-910. |
[8] | Wang Li. The Inverse Problem for the Supersonic Plane Flow Past a Curved Wedge [J]. Acta mathematica scientia,Series A, 2018, 38(4): 679-686. |
[9] | Ye Yaojun, Hu Yue. Global Existence and Exponential Decay of Solution for Some Higher-Order Wave Equation [J]. Acta mathematica scientia,Series A, 2018, 38(1): 110-121. |
[10] | Xie Ou, Meng Zehong, Zhao Zhenyu, You Lei. A Truncation Method Based on Hermite Functions Expansion for a Cauchy Problem of the Laplace Equation [J]. Acta mathematica scientia,Series A, 2017, 37(3): 457-468. |
[11] | Deng Jiqin, Deng Ziming. Existence and Uniqueness of Solutions for Nonlocal Cauchy Problem for Fractional Evolution Equations [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1157-1164. |
[12] | Zhang Hongwei, Liu Gongwei, Hu Qingying. Initial Boundary Value Problem for a Class Wave Equation with Logarithmic Source Term [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1124-1136. |
[13] | Lei Qian, Li Ning, Yang Han. Blow Up and Asymptotic Behavior in the Beam Equation [J]. Acta mathematica scientia,Series A, 2015, 35(4): 738-747. |
[14] | Ling Zhengqiu, Qin Siqian. Coupled Semilinear Parabolic System with Nonlinear Nonlocal Boundary Condition [J]. Acta mathematica scientia,Series A, 2015, 35(2): 234-244. |
[15] | CHEN Xiang-Ying. Global Existence of Solution of Cauchy Problem for A Generalized IMBq Equation with Weak Damping [J]. Acta mathematica scientia,Series A, 2015, 35(1): 68-82. |
|