1 |
Lewy H . On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull Amer Math Soc, 1936, 42 (12): 689- 692
|
2 |
Hayek S I . Advanced Mathematical Methods in Science and Engineering. New York: Marcel Dekker, 2000
|
3 |
Khuri S A . Biorthogonal series solution of Stokes flow problems in sectorial regions. SIAM J Appl Math, 1996, 56 (1): 19- 39
doi: 10.1137/0156002
|
4 |
Weisstein E W . CRC Concise Encyclopedia of Mathematics. Boca Raton: CRC Press, 2002
|
5 |
Begehr H . Dirichlet problems for the biharmonic equation. Gen Math, 2005, 13 (2): 65- 72
|
6 |
Garnett J . Bounded Analytic Functions. New York: Academic Press, 1981
|
7 |
Liu T S , Tang X M . Schwarz lemma at the boundary of strongly pseudoconvex domain in ${\mathbb C}^n$. Math Ann, 2016, 366 (1): 655- 666
|
8 |
Liu T S , Tang X M . A new boundary rigidity theorem for holomorphic self-mappings of the unit ball in ${\mathbb C}^n$. Pure Appl Math Q, 2015, 11 (1): 115- 130
doi: 10.4310/PAMQ.2015.v11.n1.a5
|
9 |
Bonk M . On Bloch's constant. Proc Amer Math Soc, 1990, 110 (4): 889- 894
|
10 |
Zhu J F . Schwarz lemma and boundary Schwarz lemma for pluriharmonic mappings. Filomat, 2018, 32 (15): 5385- 5402
doi: 10.2298/FIL1815385Z
|
11 |
Liu T S , Wang J F , Tang X M . Schwarz lemma at the boundary of the unit Ball in ${\mathbb C}^n$ and its applications. J Geom Anal, 2015, 25 (3): 1890- 1914
doi: 10.1007/s12220-014-9497-y
|
12 |
Bai X J , Huang J , Zhu J F . The Schwarz lemma at the boundary for harmonic mappings having zero of order p. Bull Malays Math Sci Soc, 2021, 44 (2): 827- 838
doi: 10.1007/s40840-020-00980-1
|
13 |
Wang X T , Zhu J F . Boundary Schwarz lemma for solutions to Poisson's equation. J Math Anal Appl, 2018, 463 (2): 623- 633
doi: 10.1016/j.jmaa.2018.03.043
|
14 |
Heinz E . On one-to-one harmonic mappings. Pacfic J Math, 1959, 9 (1): 101- 105
doi: 10.2140/pjm.1959.9.101
|
15 |
Pavlović M . Introduction to Function Spaces on the Disk. Belgrade: Mathematički Institut SANU, 2004
|