| 1 | Aubin J P , Ekeland I . Applied Nonlinear Analysis. New York: Wiley, 1984 | | 2 | Karamardian S . Complementarity problems over cones with monotone and pseudomonotone maps. J Optim Theory Appl, 1976, 18, 445- 454 | | 3 | Kinderlehrer D , Stampacchia G . An Introduction to Variational Inequalities and Their Applications. New York: Academic Press, 1980 | | 4 | Baiocchi C , Capelo A . Variational and Quasivariational Inequalities Applications to Free Boundary Problems. New York: Wiley, 1984 | | 5 | Konnov I V . Combined Relaxation Methods for Variational Inequalities. Berlin: Springer, 2001 | | 6 | Sibony M . Methodes iteratives pour les equations et inequations aux derivees partielles non lineares de type monotone. Calcolo, 1970, 7 (1): 65- 183 | | 7 | Korpelevich G M . The extragradient method for finding saddle points and other problems. Matecon, 1976, 12, 747- 756 | | 8 | Cai G , Bu S Q . Modified extragradient methods for variational inequality problems and fixed point problems for an infinite family of nonexpansive mappings in Banach spaces. J Global Optim, 2013, 55 (2): 437- 457 | | 9 | Cai G , Gibali A , Iyiola O S , Shehu Y . A new double-projection method for solving variational inequalities in Banach spaces. J Optim Theory Appl, 2018, 178, 219- 239 | | 10 | Iusem A N , Nasri M . Korpelevich's method for variational inequality problems in Banach spaces. J Global Optim, 2011, 50, 59- 76 | | 11 | Yao Y H , Noor M A , Noor K I , Liou Y C , Yaqoob H . Modified extragradient methods for a system of variational inequalities in Banach spaces. Acta Appl Math, 2010, 110, 1211- 1224 | | 12 | Shehu Y . Single projection algorithm for variational inequalities in Banach spaces with application to contact problem. Acta Math Sci, 2020, 40B (4): 1045- 1063 | | 13 | Popov L D . A modification of the Arrow-Hurwicz method for the search of saddle points. Mathematical notes of the Academy of Sciences of the USSR, 1980, 28, 845- 848 | | 14 | Censor Y , Gibali A , Reich S . The subgradient extragradient method for solving variational inequalities in Hilbert space. J Optim Theory Appl, 2011, 148, 318- 335 | | 15 | Ceng L C , Yao J C . Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwan J Math, 2006, 10 (5): 1293- 1303 | | 16 | Ceng L C , Hadjisavvas N , Wong N C . Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J Global Optim, 2010, 46, 635- 646 | | 17 | Iiduka H , Takahashi W . Strong convergence theorems for nonexpansive mappings and inverse strongly monotone mappings. Nonlinear Anal, 2005, 61 (3): 341- 350 | | 18 | Thong D V , Hieu D V . Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems. Numer Algor, 2019, 80, 1283- 1307 | | 19 | Cai G , Dong Q L , Peng Y . Strong convergence theorems for solving variational inequality problems with pseudo-monotone and non-Lipschitz operators. J Optim Theory Appl, 2021, 188, 447- 472 | | 20 | Yang H , Agarwal R P , Nashine H K , Liang Y . Fixed point theorems in partially ordered Banach spaces with applications to nonlinear fractional evolution equations. J Fixed Point Theory Appl, 2017, 19, 1661- 1678 | | 21 | Takahashi W , Toyoda M . Weak convergence theorems for nonexpansive mappings and monotone mappings. J Optim Theory Appl, 2003, 118, 417- 428 | | 22 | Nadezhkina N , Takahashi W . Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J Optim Theory Appl, 2006, 128, 191- 201 | | 23 | Diaz J B , Metcalf F T . Subsequential limit points of successive approximations. Trans Amer Math Soc, 1969, 135, 459- 485 | | 24 | Thong D V , Li X H , Dong Q L , Cho Y J , Rassias T M . An inertial Popov's method for solving pseudomonotone variational inequalities. Optim Lett, 2021, 15, 757- 777 | | 25 | Bot R I , Csetnek E R . An inertial Tseng's type proximal algorithm for nonsmooth and nonconvex optimization problems. J Optim Theory Appl, 2016, 171, 600- 616 | | 26 | 贺月红, 龙宪军. 求解伪单调变分不等式问题的惯性收缩投影算法. 数学物理学报, 2021, 41A (6): 1897- 1911 | | 26 | He Y H , Long X J . An inertial contraction and projection algorithm for pseudomonotone variational inequality problems. Acta Math Sci, 2021, 41A (6): 1897- 1911 | | 27 | Dong Q L , Yuan H B , Cho Y J , Rassias T M . Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim Lett, 2018, 12, 87- 102 | | 28 | Thong D V , Hieu D V . An inertial method for solving split common fixed point problems. J Fixed Point Theory Appl, 2017, 19, 3029- 3051 | | 29 | Goebel K , Reich S . Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. New York: Marcel Dekker, 1984 | | 30 | Cottle R W , Yao J C . Pseudo-monotone complementarity problems in Hilbert space. J Optim Theory Appl, 1992, 75, 281- 295 | | 31 | Xu H K . Iterative algorithm for nonlinear operators. Journal of the London Mathematical Society, 2002, 66 (1): 240- 256 | | 32 | Mainge P E . The viscosity approximation process for quasi-nonexpansive mapping in Hilbert space. Computers and Mathematics with Applications, 2010, 59, 74- 79 | | 33 | Denisov S V , Semenov V V , Chabak L M . Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern Syst Anal, 2015, 51, 757- 765 | | 34 | Iusem A N , Otero R G . Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces. Numer Funct Anal Optim, 2001, 22, 609- 640 | | 35 | Yang J . Self-adaptive inertial subgradient extragradient algorithm for solving pseudomonotone variational inequalities. Applicable Analysis, 2021, 100 (5): 1067- 1078 | | 36 | Harker P T , Pang J S . A damped-Newton method for the linear complementarity problem. Lect Appl Math, 1990, 26, 265- 284 | | 37 | Solodov M V , Svaiter B F . A new projection method for variational inequality problems. SIAM J Control Optim, 1999, 37 (3): 765- 776 |
|