| 1 | Manásevich R , Zanolin F . Time mapping and multiplicity of solutions for the one-dimensional p-Laplacian. Nonlinear Analysis TMA, 1993, 21, 269- 291 | | 2 | Del Pino M A , Manásevich R . Infinitely many 2π-periodic solutions for a problem arising in nonlinear elasticity. J.Differential Equations, 1993, 103, 260- 277 | | 3 | Amster P , Napoli P . Landesman-Lazer type conditions for a system of p-Laplacian like operators. J Math Anal Appl, 2007, 326, 1236- 1243 | | 4 | Del Pino M A , Manásevich R . Multiple solutions for the p-Laplacian under global nonresonance. Proc Amer Math Soc, 1991, 112, 131- 138 | | 5 | Del Pino M A , Drábek P , Manásevich R . The Fredholm alternative at the first eigen-value for the one-dimensional p-Laplacian. J Differential Equations, 1999, 151, 386- 419 | | 6 | Del Pino M A , Manásevich R , Elgueta M . A homotopic deformation along p of a Leray-Schauder degree results and existence for (|u|p−2u′)′+f(t,u)=0,u(0)=u(1)=0,p>1.. J Differential Equations, 1989, 80, 1- 13 | | 7 | Drábek P , Takac P . A counterexample to the Fredholm alternative for the p-Laplacian. Proc Amer Math Soc, 1999, 127, 1079- 1087 | | 8 | Drábek P , Robinson S B . Resonance problems for the the one-dimensional p-Laplacian. Proc Amer Math Soc, 2000, 128, 755- 765 | | 9 | Manásevich R , Zanolin F . Time mapping and multiplicity of solutions for the one-dimensional p-Laplacian. Nonlinear Analysis TMA, 1992, 18, 79- 92 | | 10 | Zhang M . Nonuniform nonresonance of semilinear differential equations. J Differential Equations, 2000, 166, 33- 50 | | 11 | Xiong M , Wu S , Liu J . Periodic solutions for the 1-dismensional p-Laplacian equation. J Math Anal Appl, 2007, 325, 879- 888 | | 12 | Chu K D , Hai D D . Positive solutions for the one-dimensional singular superlinear p-laplacian problem. Communications on Pure and Applied Analysis, 2020, 19 (1): 241- 252 | | 13 | Jacobowitz H . Periodic solutions of x″+f(x,t)=0 via the Poincaré -Birkhoff theorem. J Differential Equations, 1976, 20, 37- 52 | | 14 | 相福香. 一维p-次线性Laplacian方程的无穷多次调和解. 硕士学位论文. 苏州: 苏州大学, 2009 | | 14 | Xiang F X. Infinitely Mang Subharmonic Solutions for One-dimensional p-sublinear Laplacian Equations. Master's Degree Thesis. Suzhou: Soochow University, 2009 | | 15 | Hale J. Ordinary Differential Equations. Mineola New York: Dover Publications, INC, 2009 | | 16 | 丁同仁. 常微分方程定性方法的应用. 北京: 高等教育出版社, 2004, | | 16 | Ding T . Applications of Qualitative Methods of Ordinary Differential Equations. Beijing: Higher Education Press, 2004, |
|