Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (5): 1433-1450.
Previous Articles Next Articles
Received:
2021-02-10
Online:
2022-10-26
Published:
2022-09-30
Contact:
Lishan Liu
E-mail:lznwnuliqiang@126.com;mathlls@163.com
Supported by:
CLC Number:
Qiang Li,Lishan Liu. Existence of Periodic Mild Solutions for Fractional Evolution Equations with Periodic Impulses[J].Acta mathematica scientia,Series A, 2022, 42(5): 1433-1450.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Amann H. Nonlinear Operators in Ordered Banach Spaces and Some Applicitions to Nonlinear Boundary Value Problem// Nonlinear Operators and the Calculus of Variations, Lecture Notes in Mathmematics. Berlin and New York: Springer-Verlag, 1976: 1-55 |
2 | Amann H. Periodic Solutions of Semilinear Parabolic Equations// Cesari L, Kannan R, Weinberger R, eds. Nonlinear Anal. A Collection of Papers in Honor of Erich H. Rothe, New York: Academic Press, 1978: 1-29 |
3 |
Anh C , Ke T . On nonlocal problems for retrded fractional differential equations in Banach spaces. Fixed Point Theory, 2014, 16, 373- 392
doi: 10.1007/s11784-015-0218-3 |
4 |
Burton T , Kirk C . A fixed point theorem of Krasnoselskiii-Schaefer type. Math Nachr, 1998, 189, 23- 31
doi: 10.1002/mana.19981890103 |
5 |
Chen P , Li Y . Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions. Z Angew Math Phys, 2014, 65, 711- 728
doi: 10.1007/s00033-013-0351-z |
6 |
Chen P , Zhang X , Li Y . Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators. Fract Calcu Appl Anal, 2020, 23, 268- 291
doi: 10.1515/fca-2020-0011 |
7 | Fečkan M , Wang J . Periodic impulsive fractional differential equations. Adv Nonlinear Anal, 2019, 8, 482- 496 |
8 |
Gou H , Li B . Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup. Commun Nonlinear Sci Numer Simul, 2017, 42, 204- 214
doi: 10.1016/j.cnsns.2016.05.021 |
9 |
Gou H , Li Y . A study on impulsive fractional hybrid evolution equations using sequence method. Comput Appl Math, 2020, 39, 225
doi: 10.1007/s40314-020-01239-y |
10 | Kilbas A , Srivastava H , Trujillo J . Theory and Applications of Fractional Differential Equations. Boston, USA: Elsevier, 2006 |
11 |
Li Y . Existence and asymptotic stability of periodic solution for evolution equations with delays. J Funct Anal, 2011, 261, 1309- 1324
doi: 10.1016/j.jfa.2011.05.001 |
12 |
Li Q , Wei W . Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evol Equ Control Theory, 2020, 9, 753- 772
doi: 10.3934/eect.2020032 |
13 |
Liang J , Liu J , Xiao T , Xu H . Periodicity of solutions to the Cauchy problem for nonautonomous impulsive delay evolution equations in Banach spaces. Anal Appl, 2017, 15, 457- 476
doi: 10.1142/S0219530515500281 |
14 | Pazy A . Semigroups of Linear Operators and Applications to Partial Differential Equations. Berlin: Springer-Verlag, 1983 |
15 |
Pierri M . On S-asymptotically ω-periodic functions and applications. Nonlinear Anal, 2012, 75, 651- 661
doi: 10.1016/j.na.2011.08.059 |
16 |
Ren L , Wang J , Fečkan M . Asymptotically periodic solutions for Caputo type fractional evolution equations. Fract Calc Appl Anal, 2018, 21, 1294- 1312
doi: 10.1515/fca-2018-0068 |
17 |
Ren L , Wang J , Fečkan M . Periodic mild solutions of impulsive fractional evolution equations. AIMS Math, 2020, 5, 497- 506
doi: 10.3934/math.2020033 |
18 | Sadovskii B N . A fixed-point principle. Funct Anal Appl, 1967, 1, 151- 153 |
19 | Shao Y , Zhang H . Monotone iterative technique of periodic solutions for impulsive evolution equations in Banach space. J Comput Anal Appl, 2014, 17, 48- 58 |
20 | Shu X , Shi Y . A study on the mild solution of impulsive fractional evolution equations. Appl Math Comput, 2016, 273, 465- 476 |
21 |
Wang J , Fečkan M , Zhou Y . On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn Partial Differ Equ, 2011, 8, 345- 361
doi: 10.4310/DPDE.2011.v8.n4.a3 |
22 |
Wang R , Chen D , Xiao T . Abstract fractional Cauchy problems with almost sectorial operators. Journal of Differential Equations, 2012, 252, 202- 235
doi: 10.1016/j.jde.2011.08.048 |
23 | Wang J , Zhou Y . A class of fractional evolution equations and optimal controls. Nonlinear Anal Real World Appl, 2011, 12, 263- 272 |
24 |
Wang J , Fečkan M , Zhou Y . Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations. Commun Nonlinear Sci, 2013, 18, 246- 256
doi: 10.1016/j.cnsns.2012.07.004 |
25 | Wu J . Theory and Applications of Partial Functional Differential Equations. Appl Math Sciences, Vol 119. New York: Springer, 1996 |
26 |
Xie S . Existence results of mild solutions for impulsive fractional integro-differential evolution equations with infinite delay. Fract Calc Appl Anal, 2014, 17, 1158- 1174
doi: 10.2478/s13540-014-0219-8 |
27 |
Zhang T , Xiong L . Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative. Appl Math Letters, 2020, 101, 106072
doi: 10.1016/j.aml.2019.106072 |
28 | Zhou Y . Basic Theory of Fractional Differential Equations. Singapore: World Scientific, 2014 |
29 | Zhou Y . Fractional Evolution Equations and Inclusions: Analysis and Control. New York: Elsevier, 2016 |
[1] | Baoying Du,Jinxing Liu. Global Regularity for the Incompressible 3D Hall-Magnetohydrodynamics with Partial Dissipation [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1754-1767. |
[2] | Heqian Lu,Zhengce Zhang. The Critical Exponents for the Evolution p-Laplacian Equation with Nonlinear Gradient Terms [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1381-1397. |
[3] | Nan Deng,Meiqiang Feng. Positive Doubly Periodic Solutions To Telegraph Equations: Existence, Uniqueness, Multiplicity and Asymptotic Behavior [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1360-1380. |
[4] | Ruiying WEI, Yin LI, Zheng-an YAO. THE GLOBAL EXISTENCE AND A DECAY ESTIMATE OF SOLUTIONS TO THE PHAN-THEIN-TANNER MODEL [J]. Acta mathematica scientia,Series A, 2022, 42(3): 1058-1080. |
[5] | Shaowen Yao,Wenjie Li,Zhibo Cheng. Nondegeneracy and Uniqueness of Periodic Solution for Third-Order Nonlinear Differential Equations [J]. Acta mathematica scientia,Series A, 2022, 42(2): 454-462. |
[6] | Shijie Shi,Zhengrong Liu,Hui Zhao. Boundedness and Stabilization of a Chemotaxis Model Describing Tumor Invasion with Signal-Dependent Motility [J]. Acta mathematica scientia,Series A, 2022, 42(2): 502-519. |
[7] | Tong Tang,Cong Niu. Global Existence of Weak Solutions to the Quantum Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2022, 42(2): 387-400. |
[8] | Tong Zhao,Hailong Yuan,Gaihui Guo. Positive Solutions of a Predator-Prey Model with Modified Leslie-Gower Type [J]. Acta mathematica scientia,Series A, 2022, 42(1): 176-186. |
[9] | Lianfeng Yang,Xiaoyu Zeng. Existence and Blow-Up Behavior of Ground State Solutions for Pseudo-Relativistic Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2022, 42(1): 165-175. |
[10] | Min Zhu,Mengli Liu. A Dengue Fever Model Incorporating Heterogeneous Cross-Diffusion [J]. Acta mathematica scientia,Series A, 2022, 42(1): 201-215. |
[11] | Yuge Du,Shuying Tian. Existence and Blow-Up of a Parabolic Equation with Logarithmic Nonlinearity [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1816-1829. |
[12] | Jianzhong Min,Xiangao Liu,Zixuan Liu. Serrin's Type Solutions of the Incompressible Liquid Crystals System [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1671-1683. |
[13] | Zaiyun Zhang,Zhenhai Liu,Youjun Deng. Global Existence and General Decay for a Nonlinear Viscoelastic Equation with Time-Varying Delay and Velocity-Dependent Material Density [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1684-1704. |
[14] | Zhe Jia,Zuodong Yang. Global Boundedness in a Chemotaxis-Haptotaxis Model with Nonlinear Diffusion and Signal Production [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1382-1395. |
[15] | Penghong Zhong,Xingfa Chen. Global Smoothness of the Plane Wave Solutions for Landau-Lifshitz Equation [J]. Acta mathematica scientia,Series A, 2021, 41(3): 729-739. |
|