| 1 | Ben-Tal A , Kerzner L , Zlobec S . Optimality conditions for convex semi-infinite programming problems. Nav Res Logist, 1980, 27, 413- 435 | | 2 | Bo? R I , Grad S M . Wolfe duality and Mond-Weir duality via perturbations. Nonlinear Anal, 2010, 73, 374- 384 | | 3 | Dinh N , Goberna M A , Lopez M A , Son T Q . New Farkas-type constraint qualifications in convex infinite programming. ESAIM Control Optim Calc Var, 2007, 13, 580- 597 | | 4 | Fang D H , Li C , Ng K F . Constraint qualifications for extended Farkas's lemmas and Lagrangian dualities in convex infinite programming. SIAM J Optim, 2009, 20, 1311- 1332 | | 5 | Fang D H , Li C , Ng K F . Constraint qualifications for optimality conditions and total Lagrangian dualities in convex infinite programming. Nonlinear Anal, 2010, 73, 1143- 1159 | | 6 | Lee J H , Lee G M . On ε-solutions for convex optimization problems with uncertainty data. Positivity, 2012, 16, 509- 526 | | 7 | Lee J H , Jiao L G . On quasi ε-solution for robust convex optimization problems. Optim Lett, 2017, 11, 1609- 1622 | | 8 | Sun X K , Fu H Y , Zeng J . Robust approximate optimality conditions for uncertain nonsmooth optimization with infinite number of constraints. Mathematics, 2019, 7, 12- 25 | | 9 | Ye D P , Hu L L , Fang D H . ε-Optimality conditions And ε-saddle point theorems for robust conical programming problems. J Nonlinear Convex Anal, 2020, 21, 835- 850 | | 10 | Sun X K , Teo K L , Long X J . Characterizations of robust ε-quasi optimal solutions for nonsmooth optimization problems with uncertain data. Optim, 2021, 70, 1- 24 | | 11 | Zhong L N , Jin Y F . Optimality conditions for minimax optimization problems with an infinite number of constraints and related applications. Acta Math Appl Sin-E, 2021, 37, 251- 263 | | 12 | Mishra S K , Laha V . On Minty variational principle for nonsmooth vector optimization problems with approximate convexity. Optim Lett, 2016, 10, 577- 898 | | 13 | Son T Q , Kim D S . ε-Mixed type duality for nonconvex multiobjective programs with an infinite number of constraints. J Glob Optim, 2013, 57, 447- 465 | | 14 | Mordukhovich B S , Nam N M , Yen N D . Fréchet subdifferential calculus and optimality conditions in nondifferentiable programming. Optim, 2006, 55, 685- 708 | | 15 | Alejandro J , Dinh T L , Michel T R . ε-Subdifferential and ε-monotonicity. Nonlinear Anal Theory, 1998, 33, 71- 90 | | 16 | Zǎlinescu C . Convex Analysis in General Vector Spaces. New Jersey: World Scientific, 2002 | | 17 | Lasserre J B . On representations of the feasible set in convex optimization. Optim Lett, 2010, 4, 1- 5 | | 18 | Dutta J , Lalitha C S . Optimality conditions in convex optimization revisited. Optim Lett, 2013, 7, 221- 229 | | 19 | Chieu N H , Jeyakumar V , Li G Y , Mohebi H . Constraint qualifications for convex optimization without convexity of constraints: new connections and applications to best approximation. European J Oper Res, 2018, 265, 19- 25 | | 20 | Chuong T D , Kim D S . Nonsmooth semi-infinite multiobjective optimization problems. J Optim Theory Appl, 2014, 160, 748- 762 |
|