1 |
Ben-Tal A , Kerzner L , Zlobec S . Optimality conditions for convex semi-infinite programming problems. Nav Res Logist, 1980, 27, 413- 435
doi: 10.1002/nav.3800270307
|
2 |
Boţ R I , Grad S M . Wolfe duality and Mond-Weir duality via perturbations. Nonlinear Anal, 2010, 73, 374- 384
doi: 10.1016/j.na.2010.03.026
|
3 |
Dinh N , Goberna M A , Lopez M A , Son T Q . New Farkas-type constraint qualifications in convex infinite programming. ESAIM Control Optim Calc Var, 2007, 13, 580- 597
doi: 10.1051/cocv:2007027
|
4 |
Fang D H , Li C , Ng K F . Constraint qualifications for extended Farkas's lemmas and Lagrangian dualities in convex infinite programming. SIAM J Optim, 2009, 20, 1311- 1332
|
5 |
Fang D H , Li C , Ng K F . Constraint qualifications for optimality conditions and total Lagrangian dualities in convex infinite programming. Nonlinear Anal, 2010, 73, 1143- 1159
doi: 10.1016/j.na.2010.04.020
|
6 |
Lee J H , Lee G M . On ε-solutions for convex optimization problems with uncertainty data. Positivity, 2012, 16, 509- 526
doi: 10.1007/s11117-012-0186-4
|
7 |
Lee J H , Jiao L G . On quasi ε-solution for robust convex optimization problems. Optim Lett, 2017, 11, 1609- 1622
doi: 10.1007/s11590-016-1067-8
|
8 |
Sun X K , Fu H Y , Zeng J . Robust approximate optimality conditions for uncertain nonsmooth optimization with infinite number of constraints. Mathematics, 2019, 7, 12- 25
|
9 |
Ye D P , Hu L L , Fang D H . ε-Optimality conditions And ε-saddle point theorems for robust conical programming problems. J Nonlinear Convex Anal, 2020, 21, 835- 850
|
10 |
Sun X K , Teo K L , Long X J . Characterizations of robust ε-quasi optimal solutions for nonsmooth optimization problems with uncertain data. Optim, 2021, 70, 1- 24
doi: 10.1080/02331934.2020.1805539
|
11 |
Zhong L N , Jin Y F . Optimality conditions for minimax optimization problems with an infinite number of constraints and related applications. Acta Math Appl Sin-E, 2021, 37, 251- 263
doi: 10.1007/s10255-021-1019-7
|
12 |
Mishra S K , Laha V . On Minty variational principle for nonsmooth vector optimization problems with approximate convexity. Optim Lett, 2016, 10, 577- 898
doi: 10.1007/s11590-015-0883-6
|
13 |
Son T Q , Kim D S . ε-Mixed type duality for nonconvex multiobjective programs with an infinite number of constraints. J Glob Optim, 2013, 57, 447- 465
doi: 10.1007/s10898-012-9994-0
|
14 |
Mordukhovich B S , Nam N M , Yen N D . Fréchet subdifferential calculus and optimality conditions in nondifferentiable programming. Optim, 2006, 55, 685- 708
doi: 10.1080/02331930600816395
|
15 |
Alejandro J , Dinh T L , Michel T R . ε-Subdifferential and ε-monotonicity. Nonlinear Anal Theory, 1998, 33, 71- 90
doi: 10.1016/S0362-546X(97)00511-7
|
16 |
Zǎlinescu C . Convex Analysis in General Vector Spaces. New Jersey: World Scientific, 2002
|
17 |
Lasserre J B . On representations of the feasible set in convex optimization. Optim Lett, 2010, 4, 1- 5
doi: 10.1007/s11590-009-0153-6
|
18 |
Dutta J , Lalitha C S . Optimality conditions in convex optimization revisited. Optim Lett, 2013, 7, 221- 229
doi: 10.1007/s11590-011-0410-3
|
19 |
Chieu N H , Jeyakumar V , Li G Y , Mohebi H . Constraint qualifications for convex optimization without convexity of constraints: new connections and applications to best approximation. European J Oper Res, 2018, 265, 19- 25
doi: 10.1016/j.ejor.2017.07.038
|
20 |
Chuong T D , Kim D S . Nonsmooth semi-infinite multiobjective optimization problems. J Optim Theory Appl, 2014, 160, 748- 762
doi: 10.1007/s10957-013-0314-8
|