Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (2): 401-417.
Previous Articles Next Articles
Received:
2021-08-02
Online:
2022-04-26
Published:
2022-04-18
Contact:
Qi Gao
E-mail:hudie8062@163.com;gaoq@whut.edu.cn
Supported by:
CLC Number:
Die Hu,Qi Gao. Multiple Solutions to Logarithmic Kirchhoff Equations[J].Acta mathematica scientia,Series A, 2022, 42(2): 401-417.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Kirchhoff G. Mechanik. Leipzig: Teubner, 1883 |
2 | Lions J L . On some questions in boundary value problems of mathematical physics. North-Holland Mathematics Studies, 1978, 30: 284- 346 |
3 |
Arosio A , Panizzi S . On the well-posedness of the Kirchhoff string. Transactions of the American Mathematical Society, 1996, 348 (1): 305- 330
doi: 10.1090/S0002-9947-96-01532-2 |
4 | Bernstein S . Sur une classe d'équations fonctionnelles aux dérivées partielles. Bulletin de Académie des Sciences de URSS, 1940, 4: 17- 26 |
5 | Cavalcanti M M , Domingos Cavalcanti V N , Soriano J A . Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation. Advances in Differential Equations, 2001, 6 (6): 701- 730 |
6 | D'Ancona P , Spagnolo S . Global solvability for the degenerate Kirchhoff equation with real analytic data. Inventiones Mathematicae, 1992, 108 (2): 247- 262 |
7 |
Li Y H , Li F Y , Shi J P . Existence of a positive solution to Kirchhoff type problems without compactness conditions. Journal of Differential Equations, 2012, 253 (7): 2285- 2294
doi: 10.1016/j.jde.2012.05.017 |
8 | Hu T X , Lu L . Multiplicity of positive solutions for Kirchhoff type problems in $\mathbb{R}^3$. Topological Methods in Nonlinear Analysis, 2017, 50 (1): 231- 252 |
9 |
Sun D D , Zhang Z T . Uniqueness existence and concentration of positive ground state solutions for Kirchhoff type problems in $\mathbb{R}^{3}$. Journal of Mathematical Analysis and Applications, 2018, 461 (1): 128- 149
doi: 10.1016/j.jmaa.2018.01.003 |
10 |
Zhang Z T , Perera K . Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. Journal of Mathematical Analysis and Applications, 2006, 317 (2): 456- 463
doi: 10.1016/j.jmaa.2005.06.102 |
11 |
Shuai W . Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. Journal of Differential Equations, 2015, 259 (4): 1256- 1274
doi: 10.1016/j.jde.2015.02.040 |
12 |
Deng Y B , Peng S J , Shuai W . Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^3$. Journal of Funcional Analysis, 2015, 269 (11): 3500- 3527
doi: 10.1016/j.jfa.2015.09.012 |
13 |
Shuai W . Multiple solutions for logarithmic Schrödinger equations. Nonlinearity, 2019, 32 (6): 2201- 2225
doi: 10.1088/1361-6544/ab08f4 |
14 |
Alves C O , De Morais Filho D C . Existence of concentration of positive solutions for a Schrödinger logarithmic equation. Zeitschrift für Angewandte Mathematik und Physik, 2018, 69 (6): 144- 165
doi: 10.1007/s00033-018-1038-2 |
15 |
D'Avenia P , Montefusco E , Squassina M . On the logarithmic Schrödinger equation. Communications in Contemporary Mathematics, 2014, 16 (2): 1350032
doi: 10.1142/S0219199713500326 |
16 |
D'Avenia P , Squassina M , Zenari M . Fractional logarithmic Schrödinger equations. Math Methods Appl Sci, 2015, 38: 5207- 5216
doi: 10.1002/mma.3449 |
17 |
Ji C , Szulkin A . A logarithmic Schrödinger equation with asymptotic conditions on the potential. Journal of Mathematical Analysis and Applications, 2016, 437 (1): 241- 254
doi: 10.1016/j.jmaa.2015.11.071 |
18 |
Squassina M , Szulkin A . Multiple solutions to logarithmic Schrödinger equations with periodic potential. Calculus of Variations and Partial Differential Equations, 2015, 54 (1): 585- 597
doi: 10.1007/s00526-014-0796-8 |
19 |
Tanaka K , Zhang C X . Multi-bump solutions for logarithmic Schrödinger equations. Calculus of Variations and Partial Differential Equations, 2017, 56 (2): 33- 35
doi: 10.1007/s00526-017-1122-z |
20 | Wen L X , Tang X H , Chen S T . Ground state sign-changing solutions for Kirchhoff equations with logarithmic nonlinearity. Electronic Journal of Qualitative Theory of Differential Equations, 2019, 47 (1): 1- 13 |
21 | Willem M. Minimax Theorems. Boston: Birkhäuser, 1996 |
22 | Miranda C . Un'osservazione su un teorema di Brouwer. Bollettino dell'Unione Matematica Italiana, 1940, 3 (2): 5- 7 |
23 | Vázquez J L . A strong maximum principle for some quasilinear elliptic equations. Applied Mathematics & Optimization, 1984, 12 (1): 191- 202 |
24 |
Brézis H , Lieb E . A relation between pointwise convergence of functions and convergence of functionals. Proceedings of the American Mathematical Society, 1983, 88 (3): 486- 490
doi: 10.1090/S0002-9939-1983-0699419-3 |
25 |
Ding Y H , Li S J . Some Existence results of solutions for the semilinear elliptic equations on $\mathbb{R}^{N}$. Journal of Differential Equations, 1995, 119 (2): 401- 425
doi: 10.1006/jdeq.1995.1096 |
26 | Lions P L . The concentration-compactness principle in the calculus of variations. The locally compact case, part 1. Nonlinear Analysis, 1984, 1 (2): 109- 145 |