Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (6): 1646-1669.
Previous Articles Next Articles
Received:
2019-08-30
Online:
2020-12-26
Published:
2020-12-29
Contact:
Zixia Yuan
E-mail:math@126.com;yuanzixia@uestc.edu.cn
Supported by:
CLC Number:
Juan Wang,Zixia Yuan. Global Existence and Convergence of Solutions to a Chemotactic Model with Logarithmic Sensitivity and Mixed Boundary Conditions[J].Acta mathematica scientia,Series A, 2020, 40(6): 1646-1669.
1 | Adler J . Chemotaxis in bacteria. Science, 1966, 153 (3737): 708- 716 |
2 | Deng C , Li T . Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework. Journal of Differential Equations, 2014, 257 (5): 1311- 1332 |
3 | Fontelos M A , Friedman A , Hu B . Mathematical analysis of a model for the initiation of angiogenesis. SIAM Journal on Mathematical Analysis, 2002, 33 (6): 1330- 1355 |
4 |
Guo J , Xiao J X , Zhao H J , Zhu C J . Global solutions to a hyperbolic-parabolic coupled system with large initial data. Acta Mathematica Scientia, 2009, 29 (3): 629- 641
doi: 10.1016/S0252-9602(09)60059-X |
5 | Hao C C . Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces. Zeitschrift für angewandte Mathematik und Physik, 2012, 63 (5): 825- 834 |
6 | Hou Q Q , Liu C J , Wang Y G , Wang Z A . Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis:one-dimensional case. SIAM Journal on Mathematical Analysis, 2018, 50 (3): 3058- 3091 |
7 | Hou Q Q , Wang Z A , Zhao K . Boundary layer problem on a hyperbolic system arising from chemotaxis. Journal of Differential Equations, 2016, 261 (9): 5035- 5070 |
8 | Hou Q Q , Wang Z A . Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane. Journal de Mathematiques Pures et Appliquees, 2019, 130: 251- 287 |
9 | Jin H Y , Li J Y , Wang Z A . Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity. Journal of Differential Equations, 2013, 255 (2): 193- 219 |
10 | Keller E F , Segel L A . Initiation of slime mold aggregation viewed as an instability. Journal of Theoretical Biology, 1970, 26 (3): 399- 415 |
11 | Keller E F , Segel L A . Traveling bands of chemotactic bacteria:a theoretical analysis. Journal of Theoretical Biology, 1971, 30 (2): 235- 248 |
12 | Levine H A , Sleeman B D . A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM Journal on Applied Mathematics, 1997, 57 (3): 683- 730 |
13 | Li D , Li T , Zhao K . On a hyperbolic-parabolic system modeling chemotaxis. Mathematical Models and Methods in Applied Sciences, 2011, 21 (8): 1631- 1650 |
14 | Li H , Zhao K . Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis. Journal of Differential Equations, 2015, 258 (2): 302- 338 |
15 | Li T , Pan R H , Zhao K . Global dynamics of a hyperbolic-parabolic model arising from chemotaxis. SIAM Journal on Applied Mathematics, 2012, 72 (1): 417- 443 |
16 | Li T , Wang Z A . Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis. SIAM Journal on Applied Mathematics, 2009, 70 (5): 1522- 1541 |
17 | Li T , Wang Z A . Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis. Mathematical Models and Methods in Applied Sciences, 2010, 20 (11): 1967- 1998 |
18 | Li T , Wang Z A . Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis. Journal of Differential Equations, 2011, 250 (3): 1310- 1333 |
19 | Li T , Wang Z A . Steadily propagating waves of a chemotaxis model. Mathematical Biosciences, 2012, 240 (2): 161- 168 |
20 | Li J Y , Wang L N , Zhang K J . Asymptotic stability of a composite wave of two traveling waves to a hyperbolic-parabolic system modeling chemotaxis. Mathematical Methods in the Applied Sciences, 2013, 36 (14): 1862- 1877 |
21 | Martinez V R , Wang Z A , Zhao K . Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology. Indiana University Mathematics Journal, 2018, 67 (4): 1383- 1424 |
22 | Ni W M . Diffusion, cross-diffusion, and their spike-layer steady states. Notices of the Amer Math Soc, 1998, 45 (1): 9- 18 |
23 | Othmer H G , Stevens A . Aggregation, blowup, and collapse:the ABC's of taxis in reinforced random walks. SIAM Journal on Applied Mathematics, 1997, 57 (4): 1044- 1081 |
24 | Peng H Y , Wen H Y , Zhu C J . Global well-posedness and zero diffusion limit of classical solutions to the 3D conservation laws arising in chemotaxis. Zeitschrift für angewandte Mathematik und Physik, 2014, 65 (6): 1167- 1188 |
25 | Peng Y , Xiang Z . Global solutions to the coupled chemotaxis-fluids system in a 3D unbounded domain with boundary. Mathematical Models and Methods in Applied Sciences, 2018, 28: 869- 920 |
26 | Peng Y , Xiang Z . Global existence and convergence rates to a chemotaxis-fluids system with mixed boundary conditions. Journal of Differential Equations, 2019, 267: 1277- 1321 |
27 | Rebholz L G , Wang D H , Wang Z A , et al. Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions. Discrete and Continuous Dynamical Systems-Series A, 2019, 39 (7): 3789- 3838 |
28 | Tao Y , Wang L , Wang Z A . Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete and Continuous Dynamical Systems-Series B, 2013, 18 (3): 821- 845 |
29 | Wang Y, Winkler M, Xiang Z. The fast signal diffusion limit in Keller-Segel (-fluid) systems. Calculus of Variations and Partial Differential Equations, 2019, 58, Article number: 196 |
30 | Tian Y , Xiang Z . Global solutions to a 3D chemotaxis-Stokes system with nonlinear cell diffusion and Robin signal boundary condition. Journal of Differential Equations, 2020, 269 (3): 2012- 2056 |
31 | Wang Z A , Xiang Z , Yu P . Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis. Journal of Differential Equations, 2016, 260 (3): 2225- 2258 |
32 | Wang Z A , Zhao K . Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model. Communications on Pure and Applied Analysis, 2013, 12 (6): 3027- 3046 |
33 | Wu C , Xiang Z . The small-convection limit in a two-dimensional Keller-Segel-Navier-Stokes system. Journal of Differential Equations, 2019, 267: 938- 978 |
34 | Wu C , Xiang Z . Asymptotic dynamics on a chemotaxis-Navier-Stokes system with nonlinear diffusion and inhomogeneous boundary conditions. Mathematical Models and Methods in Applied Sciences, 2020, 30 (7): 1325- 1374 |
35 | Zhang M , Zhu C J . Global existence of solutions to a hyperbolic-parabolic system. Proceedings of the American Mathematical Society, 2007, 135 (4): 1017- 1027 |
36 | Zhu N , Liu Z R , Martinez V R , Zhao K . Global Cauchy problem of a system of parabolic conservation laws arising from a Keller-Segel type chemotaxis model. SIAM Journal on Mathematical Analysis, 2018, 50 (5): 5380- 5425 |
[1] | Xiaoli Han. Multiple Pertubations to a Quasilinear Schrödinger Equation [J]. Acta mathematica scientia,Series A, 2020, 40(4): 869-881. |
[2] | Jie Wu,Hongxia Lin. The Global Solution and Asymptotic Behavior of Parabolic-Parabolic Keller-Segel Type Model [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1102-1114. |
[3] | Penghong Zhong,Ganshan Yang,Xuan Ma. Global Existence and Self-Similar Blowup of Landau-Lifshitz-Gilbert Equation on Hyperbolic Space [J]. Acta mathematica scientia,Series A, 2019, 39(3): 461-474. |
[4] | Su Xiao, Wang Shubin. Finite Time Blow-Up for the Damped Semilinear Wave Equations with Arbitrary Positive Initial Energy [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1085-1093. |
[5] | Duan Shuangshuang, Huang Shoujun. Blow up of Periodic Solutions for a Class of Keller-Segel Equations Arising in Biology [J]. Acta mathematica scientia,Series A, 2017, 37(2): 326-341. |
[6] | Qiu Hua, Zhang Yingshu, Fang Shaomei. The Global Existence Result of a Leray-α-Oldroyd Model to the Incompressible Viscoelastic Flow [J]. Acta mathematica scientia,Series A, 2017, 37(1): 102-112. |
[7] | Gao Xinchun, Zhou Jian, Tian Miaoqing. Global Boundedness and Asymptotic Behavior in an Attraction-Repulsion Chemotaxis System with Logistic Source [J]. Acta mathematica scientia,Series A, 2017, 37(1): 113-121. |
[8] | Liu Yang. Potential Well and Application to Non-Newtonian Filtration Equations at Critical Initial Energy Level [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1211-1220. |
[9] | Huang Shoujun, Wang Rui. Plane Wave Solutions to the Euler Equations for Chaplygin Gases [J]. Acta mathematica scientia,Series A, 2016, 36(4): 681-689. |
[10] | Lou Cuijuan, Yang Yin. Existence of Traveling Wave Solutions for a Classical Chemotaxis Model [J]. Acta mathematica scientia,Series A, 2015, 35(6): 1044-1058. |
[11] | Xu Yanli. Exponential Convergence of An Epidemic Model with Delays and Oscillating Recovery Rates [J]. Acta mathematica scientia,Series A, 2015, 35(5): 987-994. |
[12] | Di Huafei, Shang Yadong. Global Existence and Nonexistence of Solutions for A Class of Fourth Order Wave Equation with Nonlinear Damping and Source Terms [J]. Acta mathematica scientia,Series A, 2015, 35(3): 618-633. |
[13] | SHEN Ji-Hong, ZHANG Ming-You, YANG Yan-Bing, LIU Bo-Wei, XU Run-Zhang. Global Well-posedness of Cauchy Problem for Damped Multidimensional Generalized Boussinesq Equations [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1173-1187. |
[14] |
QIN Yu-Ming, LI Hai-Yan.
GLOBAL EXISTENCE AND EXPONENTIAL STABILITY OF SOLUTIONS TO THE QUASILINEAR THERMO-DIFFUSION EQUATIONS WITH SECOND SOUND [J]. Acta mathematica scientia,Series A, 2014, 34(3): 759-778. |
[15] | MI Yong-Sheng, MU Chun-Lai, WU Yun-Long. Global Existence and Blow-up of Solutions to a Doubly Degenerate Parabolic System with Nonlinear Boundary Conditions [J]. Acta mathematica scientia,Series A, 2014, 34(3): 626-637. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 103
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 66
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|