Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (6): 1599-1611.
Previous Articles Next Articles
Jiao Luo(),Qian Qi(),Hong Luo*()
Received:
2020-06-03
Online:
2020-12-26
Published:
2020-12-29
Contact:
Hong Luo
E-mail:656508503@qq.com;1374852064@qq.com;lhscnu@163.com
Supported by:
CLC Number:
Jiao Luo,Qian Qi,Hong Luo. Weak Solutions to Higher-Order Anisotropic Cahn-Hilliard-Navier-Stokes Systems[J].Acta mathematica scientia,Series A, 2020, 40(6): 1599-1611.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Anderson D M , Mcfadden G B , Wheeler A A . Diffuse-interface methods in fluid mechanics. Annual Review of Fluid Mechanics, 1998, 30 (1): 139- 165 |
2 | Gurtin M E , Polignone D , Vinals J . Two-phase binary fluids and immiscible fluids described by an order parameter. Mathematical Models and Methods in Applied Sciences, 1996, 6 (6): 815- 831 |
3 | Jasnow D , Vinals J . Coarse-grained description of thermo-capillary flow. Physics of Fluids, 1996, 8 (3): 660- 669 |
4 | Lamorgese A G , Molin D , Mauri R . Phase field approach to multiphase flow modeling. Milan Journal of Mathematics, 2011, 79 (2): 597- 642 |
5 | Ables H , Feireisl E . On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana University Mathematics Journal, 2008, 57 (2): 659- 698 |
6 | K im , Junseok . Phase-field models for multi-component fluid flows. Communications in Computational Physics, 2012, 12 (3): 613- 661 |
7 | Liu H , Sengul T , Wang S , Zhang P . Dynamic transitions and pattern formations for a Cahn-Hilliard model with long-range repulsive interactions. Communications in Mathematical Sciences, 2015, 13 (5): 1289- 1315 |
8 | Song L , Zhang Y , Ma T . Global attractor of the Cahn-Hilliard equation in Hk spaces. Journal of Mathematical Analysis and Applications, 2009, 355: 53- 62 |
9 | You B . Global attractor of the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Communications on Pure and Applied Analysis, 2019, 18 (5): 2283- 2298 |
10 | Gal C G , Grasselli M . Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 2010, 27 (1): 401- 436 |
11 | Cao C S , Gal C G . Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility. Nonlinearity, 2012, 25 (11): 3211- 3234 |
12 | Cherfils L , Miranville A , Peng S R . Higher-order models in phase separation. Journal of Applied Analysis and Computation, 2017, 7 (1): 39- 56 |
13 | Mininni R M , Miranville A , Romanelli S . Higher-order Cahn-Hilliard equations with dynamic boundary conditions. Journal of Mathematical Analysis and Applications, 2017, 449 (2): 1321- 1339 |
14 | Cherfils L , Gatti S , Miranville A . Asymptotic behavior of higher-order Navier-Stokes-Cahn-Hilliard systems. Mathematical Methods in the Applied Sciences, 2018, 41 (12): 4476- 4794 |
15 | Pan J J , Xing C , Luo H . Uniform regularity of the weak solution to higher-order Navier-Stokes-Cahn-Hilliard systems. Journal of Mathematical Analysis and Applications, 2020, 486 (2): 123925 |
16 | Esenturk E , Caginalp G . Anisotropic phase field equations of arbitrary order. Discrete and Continuous Dynamical Systems, 2010, 4 (2): 311- 350 |
17 | Cherfils L , Miranville A , Peng S R . Higher-order anisotropic models in phase separation. Advances in Nonlinear Analysis, 2019, 8 (1): 278- 302 |
18 | Cherfils L , Miranville A , Peng S R , Zhang W . Higher-order generalized Cahn-Hilliard equations. Electronic Journal of Qualitative Theory of Differential Equations, 2017, 9: 1- 22 |
19 | Peng S R , Zhu H Y . Well-posedness for modified higher-order anisotropic Cahn-Hilliard equations. Asymptotic Analysis, 2019, 111 (3/4): 201- 215 |
20 | Cahn J W , Hilliard J E . Free energy of nonuniform system, Ⅰ. interfacial free energy. J Chemical Physis, 1958, 28 (2): 258- 267 |
21 | Agmon S , Douglis A , Nirenberg L . Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions Ⅱ. Communications on Pure and Applied Mathematics, 1964, 17 (1): 35- 92 |
22 | Cholewa J W , Dlotko T . Global Attractors in Abstract Parabolic Problems. Cambridge: Cambridge University Press, 2000 |
23 | Giorgi C , Grasselli M , Pata V . Uniform attractors for a phase-field Model with memory and quadratic nonlinearity. Indiana University Mathematics Journal, 1999, 48 (4): 1395- 1444 |
24 | Boyer F . Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptotic Analysis, 1999, 20 (4): 175- 212 |
25 | Pal S , Haloi R . On solution to the Navier-Stokes equations with Navier slip boundary condition for three dimensional incompressible fluid. Acta Mathematica Scientia, 2019, 39B (6): 1628- 1638 |
26 | 李凯, 杨晗, 王凡. 三维带有衰减项的不可压缩磁流体力学方程组弱解与强解的研究. 数学物理学报, 2019, 39A (3): 518- 528 |
Li K , Yang H , Wang F . Study on weak solution and strong solution of incompressible MHD equations with damping in three-dimensional systems. Acta Mathematica Scientia, 2019, 39A (3): 518- 528 |
|