Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (6): 1431-1445.
Previous Articles Next Articles
Guanghui Lu*(),Shuangping Tao()
Received:
2020-01-30
Online:
2020-12-26
Published:
2020-12-29
Contact:
Guanghui Lu
E-mail:luguanghui@nwnu.edu.cn;taosp@nwnu.edu.cn
Supported by:
CLC Number:
Guanghui Lu,Shuangping Tao. θ Type Marcinkiewicz Integral and Its Commutator on Metric Measure Spaces[J].Acta mathematica scientia,Series A, 2020, 40(6): 1431-1445.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Coifman R R , Weiss G . Analyse Harmonique Non-commutative sur Certain Espaces Homogènes. Berlin: Springer-Verlag, 1971 |
2 | Coifman R R , Weiss G . Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83 (4): 569- 645 |
3 | Hu G , Lin H , Yang D . Marcinkiewicz integrals with non-doubling measures. Integral Equations Operator Theory, 2007, 58 (2): 205- 238 |
4 | 陈冬香, 吴丽丽. 具有非倍测度的Marcinkiewicz积分交换子在Morrey空间的有界性. 数学物理学报, 2011, 31A (4): 1105- 1114 |
Chen D X , Wu L L . The boundedness of the commutators for Marcinkiewicz integral with nondoubling measures on Morrey spaces. Acta Math Sci, 2011, 31A (4): 1105- 1114 | |
5 | Wang S , Jiang Y , Li B . Weighted estimates for Marcinkiewicz integrals with non-doubling measures. J Math Res Appl, 2012, 32 (2): 223- 234 |
6 | Zhang J , Jiang Y . The boundeness of Marcinkiewicz integral commutators with non-doubling measures in Herz spaces. J Math, 2010, 30 (6): 966- 972 |
7 | Tolsa X . ${BMO}$, $H^{1}$ and Calderón-Zygmund operators for non-doubling measures. Math Ann, 2001, 319 (1): 89- 149 |
8 | Tolsa X . Littlewood-Paley theory and the ${T(1)}$ theorem with non-doubling measures. Adv Math, 2001, 164 (1): 57- 116 |
9 | Hytönen T . A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ Mat, 2010, 54 (2): 485- 504 |
10 | Lin H , Yang D . Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces. Sci China Math, 2014, 57 (1): 123- 144 |
11 | Li H , Lin H . Boundedness of Marcinkiewicz integrals on Hardy spaces $H^{p}$ over non-homogeneous metric measure spaces. J Math Inequal, 2018, 12 (2): 347- 364 |
12 | Fu X , Yang Da , Yang Do . The molecular characterization of the Hardy space $H^{1}$ on nonhomogeneous metric measure spaces and its application. J Math Anal Appl, 2014, 410 (2): 1028- 1042 |
13 | Lu G , Tao S . Generalized Morrey spaces over non-homogeneous metric measure spaces. J Aust Math Soc, 2017, 103 (2): 268- 278 |
14 | 韩瑶瑶, 赵凯. 非齐度量测度空间上的Herz型Hardy空间. 中国科学:数学, 2018, 48 (10): 1315- 1338 |
Han Y Y , Zhao K . Herz type Hardy spaces on non-homogeneous metric measure space. Sci Sin Math, 2018, 48 (10): 1315- 1338 | |
15 | Lu G , Tao S . Fractional type Marcinkiewicz commutators over non-homogeneous metric measure spaces. Anal Math, 2019, 45 (1): 87- 110 |
16 | 陶双平, 逯光辉. Morrey空间上Marcinkiewicz积分与$\widetilde{{\rm RBMO}}(\mu)$交换子. 数学学报(中文版), 2019, 62 (2): 269- 278 |
Tao S P , Lu G H . Commutators of Marcinkiewicz integrals with $\widetilde{{\rm RBMO}}(\mu)$ on Morrey space. Acta Math Sin (Chinese Ser), 2019, 62 (2): 269- 278 | |
17 | Htyönen T , Yang Da , Yang Do . The Hardy space $H^{1}$ on non-homogeneous metric measure spaces. Math Proc Camb Philos Soc, 2012, 153 (1): 9- 31 |
18 | Ri C , Zhang Z . Boundedness of $\theta$-type Calderón-Zygmund operaors on non-homoge-neous metric measure spaces. Front Math in China, 2016, 11 (1): 141- 153 |
19 | Fu X , Yang Da , Yuan W . Generalized fractional integral and their commutators over non-homogeneous metric measure spaces. Taiwanese J Math, 2014, 18 (2): 509- 557 |
20 | Fu X , Lin H , Yang Da , Yang Do . Hardy space $H^{p}$ over non-homogeneous metric measure spaces and their applications. Sci China Math, 2015, 58 (2): 309- 388 |
21 | Lin H , Wu S , Yang D . Boundedness of certain commutators over non-homogeneous metric measure spaces. Anal Math Phys, 2017, 7 (2): 187- 218 |
22 | Cao Y, Zhou J. The boundedness of Marcinkiewicz integrals commutators on non-homogeneous metric measure spaces. J Inequal Appl, 2015, Article number: 259 |
23 | Bui T , Duong X . Hardy spaces, regularized BMO and the boundedness of Calderón-Zymgund operators on homogeneous spaces. J Geom Anal, 2013, 23 (2): 895- 932 |
[1] | Deng Yulong, Long Shunchao. $\bm{A_{p}(\varphi)}$ Weights, Pseudo-Differential Operators and Their Commutators [J]. Acta mathematica scientia,Series A, 2021, 41(2): 313-325. |
[2] | Yaoyao Han,Kai Zhao. Boundedness of Marcinkiewicz Integral and Its Commutator on Non-Homogeneous Metric Measure Spaces [J]. Acta mathematica scientia,Series A, 2020, 40(3): 597-610. |
[3] | Wang Liwei, Shu Lisheng. Boundedness of the Intrinsic Square Function on Variable Exponent Herz and Herz-Hardy Spaces [J]. Acta mathematica scientia,Series A, 2018, 38(4): 716-727. |
[4] | Chen Dongxiang, Chen Xuemei. Lp Boundedness for Some Commutators Related to Schrödinger Operator [J]. Acta mathematica scientia,Series A, 2016, 36(5): 832-847. |
[5] | Chen Dongxiang, Zhou Wenjuan, Fang Yuda. The Boundedness of the Commutator of Riesz Potential Associated with Schrödinger Operators [J]. Acta mathematica scientia,Series A, 2016, 36(1): 117-129. |
[6] | Wang Songbai, Pan Jibing, Jiang Yinsheng. Necessary and Sufficient Conditions for Boundedness of Commutators of Multilinear Fractional Integral Operators [J]. Acta mathematica scientia,Series A, 2015, 35(6): 1106-1114. |
[7] | Zheng Qingyu, Zhang Lei, Shi Shaoguang. On Boundedness of Sublinear Operators on Generalized Weighted Grand Morrey Spaces [J]. Acta mathematica scientia,Series A, 2015, 35(3): 503-514. |
[8] | MO Hui-Xia, LU Shan-Zhen. Boundedness of Generalized Higher Order Commutators of Marcinkiewicz |Integrals with Variable Kernels on Herz-type Hardy Spaces [J]. Acta mathematica scientia,Series A, 2015, 35(1): 56-67. |
[9] | WANG Hua. Lipschtz Estimates for Multilinear Commutator of Marcinkiewicz Operator [J]. Acta mathematica scientia,Series A, 2014, 34(4): 977-991. |
[10] | LU Sheng-Dong, JIANG Yin-Sheng, WANG Song-Bai. Weighted Estimates for Commutators of Marcinkiewicz Integrals with Non-Doubling Measures [J]. Acta mathematica scientia,Series A, 2014, 34(2): 303-316. |
[11] | SUN Ai-Wen, WANG Yong-Yan, SHU Li-Sheng. Boundedness of Multilinear Commutators Generated by Singular Integral Operators with Non-Smooth Kernel on Spaces of Homogeneous Type [J]. Acta mathematica scientia,Series A, 2014, 34(2): 347-357. |
[12] | WANG Li-Wei, QU Meng, SHU Li-Sheng. CBMO Estimates for Higher-Order Commutators onHomogeneous Morrey-Herz Spaces [J]. Acta mathematica scientia,Series A, 2014, 34(2): 426-436. |
[13] | LIAN Jia-Li, MA Bo-Lin, WU Huo-Xiong. On the Commutators of Multilinear Fractional Integrals with Weighted Lipschitz Functions [J]. Acta mathematica scientia,Series A, 2013, 33(3): 494-509. |
[14] | KONG Xiang-Bo, JIANG Yin-Sheng, ZHANG Lin. The Boundedness of Commutators with the Weighted Lipschitz Functions [J]. Acta mathematica scientia,Series A, 2013, 33(1): 152-164. |
[15] | WANG Hong-Bin, FU Zun-Wei, LIU Zong-Guang. Higher-order Commutators of Marcinkiewicz Integrals on Variable Lebesgue Spaces [J]. Acta mathematica scientia,Series A, 2012, 32(6): 1092-1101. |
|