Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (4): 842-849.

Previous Articles     Next Articles

Multiple Solutions for Nonlinear Equations Related to Kirchhoff Type Equations

Wencui Liang,Zhengjie Zhang()   

  1. School of Mathematics and Statistics, Central China Normal University, Wuhan 430079
  • Received:2019-01-30 Online:2020-08-26 Published:2020-08-20
  • Supported by:
    the NSFC(11071095);the NSFC(11371159)

Abstract:

In this paper, we will discuss the following Kirchhoff equation
$\left\{\begin{array}{ll}-\left(a+b\int_{\mathbb{R}^{3}}{|\nabla u{{|}^{2}}}\right)\triangle u+u=\left(1+\varepsilon g(x)\right) u^{p}, x\in\mathbb{R}^{3}, \\u\in H^{1}\left(\mathbb{R}^{3}\right), \end{array}\right. $
where $\varepsilon$, $a$, $b$ are positive constants, $1< p<5,g(x)\in L^{\infty}\left(\mathbb{R}^{3}\right)$. When $g(x)$ satisfy some conditions, we use perturbation method prove that there exists a $\varepsilon_{0}$, if $0<\varepsilon <\varepsilon_{0}$ there are many solutions for above problem.

Key words: Kirchhoff equations, Multiple solutions, Perturbation method, Nonlinear

CLC Number: 

  • O175.23
Trendmd