Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (4): 850-856.

Previous Articles     Next Articles

Existence of Ground States for a Class of Modified Gross-Pitaevskii Equations

Xiaomeng Huang(),Yimin Zhang*()   

  1. Center for Mathematical Sciences, Wuhan University of Technology, Wuhan 430070
  • Received:2020-02-17 Online:2020-08-26 Published:2020-08-20
  • Contact: Yimin Zhang E-mail:hhuangxiaomeng@126.com;zhangym802@126.com
  • Supported by:
    the NSFC(11771127);the Fundamental Research Funds for the Central Universities(2019IB009)

Abstract:

In this paper, using scaling technique and some rearrangement inequalities, existence and classification of ground states for a class of Modified Gross-Pitaevskii equations with respect to the nonlinear exponent p. If $2< p < 2+\frac{4}{N}$ , for any $c>0$ , there is at least a minimizer for this problem. If $p=2+\frac{4}{N}$ and $c\leq\|\phi\|_2$ or $c>\left(\frac{3}{2}\right)^{\frac{N}{4}}\|\phi\|_2$ (the definition of $\|\phi\|_2$ see section 1) or $p>2+\frac{4}{N}$ , there is no minimizer for this problem. But it is unclear if $p=2+\frac{4}{N}$ and $\|\phi\|_2<c<\left(\frac{3}{2}\right)^{\frac{N}{4}}\|\phi\|_2$.

Key words: Modified Gross-Pitaevskii equation, Ground state, Existence

CLC Number: 

  • O175.25
Trendmd