Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (3): 735-755.
Previous Articles Next Articles
Yadong Zheng(),Zhongbo Fang*()
Received:
2018-08-29
Online:
2020-06-26
Published:
2020-07-15
Contact:
Zhongbo Fang
E-mail:yadongzheng2017@sina.com;fangzb7777@hotmail.com
Supported by:
CLC Number:
Yadong Zheng,Zhongbo Fang. Blow-Up Analysis for a Weakly Coupled Reaction-Diffusion System with Gradient Sources Terms and Time-Dependent Coefficients[J].Acta mathematica scientia,Series A, 2020, 40(3): 735-755.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Amann H . Dynamic theory of quasilinear parabolic systems. Ⅲ. Global existence. Math Z, 1989, 202, 219- 250
doi: 10.1007/BF01215256 |
2 | Ladyzenskaja O A, Solonnikov V A, Uralceva N N. Linear and Quasilinear Equations of Parabolic Type. Providence, RI: Amer Math Soc, 1968 |
3 |
Ben-Artzi M , Souplet P , Weissler F B . The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces. J Math Pures Appl, 2002, 81 (4): 343- 378
doi: 10.1016/S0021-7824(01)01243-0 |
4 |
Gilding B H , Guedda B H , Kersner R . The Cauchy problem for ut=Δu+uq. J Math Anal Appl, 2003, 284, 733- 755
doi: 10.1016/S0022-247X(03)00395-0 |
5 | Bebernes J , Eberly D . Mathematical Problems from Combustion Theory. New York: Springer-Verlag, 1989 |
6 | Straughan B . Explosive Instabilities in Mechanics. Berlin: Springer, 1998 |
7 | Quittner R , Souplet P . Superlinear Parabolic Problems:Blow-Up, Global Existence and Steady States. Basel: Bikhäuser, 2007 |
8 | Hu B . Blow-up Theories for Semilinear Parabolic Equations. Heidelberg: Springer, 2011 |
9 |
Levine H A . The role of critical exponents in blow-up theorems. SIAM Rev, 1990, 32 (2): 262- 288
doi: 10.1137/1032046 |
10 |
Levine H A . Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics:the method of unbounded Fourier coefficients. Math Ann, 1975, 214 (3): 205- 220
doi: 10.1007/BF01352106 |
11 | Payne L E , Schaefer P W . Lower bounds for blow-up time in parabolic problems under Neumann conditions. Appl Anal, 2006, 85 (10): 1301- 1311 |
12 |
Payne L E , Schaefer P W . Lower bounds for blow-up time in parabolic problems under Dirichlet conditions. J Math Anal Appl, 2007, 328 (2): 1196- 1205
doi: 10.1016/j.jmaa.2006.06.015 |
13 | Fang Z B , Wang Y X . Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Z Angew Math Phys, 2015, 66 (5): 2525- 2541 |
14 |
Baghaei K , Hesaaraki M . Lower bounds for the blow-up time in the higher-dimensional nonlinear divergence form parabolic equations. C R Acad Paris, 2013, 351 (19-20): 731- 735
doi: 10.1016/j.crma.2013.09.024 |
15 |
Hesaaraki M , Moameni A . Blow-up of positive solutions for a family of nonlinear parabolic equations in general in RN. Michigan Math J, 2004, 52 (2): 375- 389
doi: 10.1307/mmj/1091112081 |
16 |
Payne L E , Song J C . Lower bounds for blow-up time in a nonlinear parabolic problem. J Math Anal, 2009, 354 (1): 394- 396
doi: 10.1016/j.jmaa.2009.01.010 |
17 |
Liu Y , Luo S G , Ye Y H . Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary conditions. Comput Math Appl, 2013, 65 (8): 1194- 1199
doi: 10.1016/j.camwa.2013.02.014 |
18 | Li H X , Gao W J , Han Y Z . Lower bounds for the blowup time of solutions to a nonlinear parabolic problem. Electron J Differ Equa, 2014, 2014 (20): 1- 6 |
19 |
Marras M , Piro S V , Viglialoro G . Lower bounds for blow-up time in a parabolic problem with a gradient team under various boundary conditions. Kodai Math J, 2014, 37 (3): 532- 543
doi: 10.2996/kmj/1414674607 |
20 | Ding J . Global and blow-up solutions for nonlinear parabolic problems with a gradient term under Robin boundary conditions. Bound Value Probl, 2013, 2013 (237): 1- 12 |
21 | Zhang Q Y , Jiang Z X , Zheng S N . Blow-up time estimate for a degenerate diffusion equation with gradient absorption. Appl Math Comput, 2015, 251, 331- 335 |
22 |
Payne L E , Song J C . Lower bounds for blow-up in a model of chemotaxis. J Math Anal Appl, 2012, 385 (2): 672- 676
doi: 10.1016/j.jmaa.2011.06.086 |
23 |
Xu X J , Ye Z . Life span of solutions with large initial data for a class of coupled parabolic systems. Z Angew Math Phys, 2013, 64 (3): 705- 717
doi: 10.1007/s00033-012-0255-3 |
24 |
Payne L E , Philippin G A . Blow-up phenomena for a class of parabolic systems with time dependent coefficients. Appl Math, 2012, 3 (4): 325- 330
doi: 10.4236/am.2012.34049 |
25 |
Tao X Y , Fang Z B . Blow-up phenomenon for a nonlinear reaction-diffusion system with time dependent coefficients. Comput Math Appl, 2017, 74 (10): 2520- 2528
doi: 10.1016/j.camwa.2017.07.037 |
26 |
Bao A G , Song X F . Bounds for the blow-up time of the solution to a parabolic system with nonlocal factors in nonlinearities. Comput Math Appl, 2016, 71 (3): 723- 729
doi: 10.1016/j.camwa.2015.12.029 |
27 |
Wang N , Song X F , Lv X S . Estimates for the blow-up time of a combustion model with nonlocal heat sources. J Math Anal Appl, 2016, 436 (2): 1180- 1195
doi: 10.1016/j.jmaa.2015.12.025 |
28 |
Petersson J H . On global existence for semilinear parabolic systems. Nonlinear Anal, 2005, 60 (2): 337- 347
doi: 10.1016/j.na.2004.08.035 |
29 | Rasheed M A, Chlebik M. The blow-up rate estimates for a reaction diffusion system with gradient terms. 2012, arXiv: 1211.6500 |
30 |
Souplet P , Weissler F B . Poincaré's inequality and global solutions of a nonlinear parabolic equation. Ann Inst H Poincaré Anal Nonlin, 1999, 16 (3): 337- 373
doi: 10.1016/s0294-1449(99)80017-1 |
[1] | Ma Lingwei, Fang Zhongbo. Lower Bounds of Blow-up Time for a Reaction-Diffusion Equation with Weighted Nonlocal Sources and Robin Type Boundary Conditions [J]. Acta mathematica scientia,Series A, 2017, 37(1): 146-157. |
[2] | WU Shi-Liang, LIU San-Yang. Global Asymptotic Stability of Bistable Traveling Wave Front in Reaction-diffusion Systems [J]. Acta mathematica scientia,Series A, 2010, 30(2): 440-448. |
[3] | Chen Qiong; Xiang Zhaoyin; Mu Chunlai. Blow-up Profiles to a Nonlocal Reaction-diffusion System [J]. Acta mathematica scientia,Series A, 2007, 27(3): 420-427. |
|