Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (3): 717-724.
Previous Articles Next Articles
Zhenyu Zhao1,2,3,*(),Riguang Lin2,Zhi Li2,Duan Mei2
Received:
2019-02-18
Online:
2020-06-26
Published:
2020-07-15
Contact:
Zhenyu Zhao
E-mail:wozitianshanglai@163.com
Supported by:
CLC Number:
Zhenyu Zhao,Riguang Lin,Zhi Li,Duan Mei. A Super Order Regularization Method for Determination of an Unknown Source in the Heat Equation[J].Acta mathematica scientia,Series A, 2020, 40(3): 717-724.
1 | Burykin A A , Denisov A M . Determination of the unknown sources in the heat-conduction equation. Comput Math Model, 1997, 8 (4): 309- 313 |
2 | Cannon J R , DuChateau P . Structural identification of an unknown source term in a heat equation. Inverse Probl, 1998, 14 (3): 535- 551 |
3 |
Cannon J R , Perez-Esteva S . Uniqueness and stability of 3d heat sources. Inverse Probl, 1991, 7, 57- 62
doi: 10.1088/0266-5611/7/1/006 |
4 |
Chen B Q , Zhao Z Y , Li Z , Meng Z H . Numerical differentiation by a fourier extension method with super-order regularization. Appl Math Comput, 2018, 334, 1- 10
doi: 10.1016/j.cam.2017.11.024 |
5 | Choulli M , Yamamoto M . Conditional stability in determining a heat source. J Inverse Ill-Posed Probl, 2004, 12 (3): 233- 243 |
6 | Dou F F , Fu C L , Yang F L . Optimal error bound and Fourier regularization for identifying an unknown source in the heat equation. J Comput Appl Math, 2009, 230 (2): 728- 737 |
7 | Badia A E , Duong T H . On an inverse source problem for the heat equation. Application to a pollution detection problem. J Inverse Ill-Posed Probl,, 2002, 10 (6): 858- 600 |
8 | Engl H W , Hanke M , Neubauer A . Regularization of Inverse Problems. Netherlands: Springer, 1996 |
9 |
Farcas A , Lesnic D . The boundary-element method for the determination of a heat source dependent on one variable. J Engrg Math, 2006, 54 (4): 375- 388
doi: 10.1007/s10665-005-9023-0 |
10 | Li G S . Data compatibility and conditional stability for an inverse source problem in the heat equation. Appl Math Comput, 2006, 173 (1): 566- 581 |
11 | Ling L , Yamamoto M M , Hon Y C , Takeuchi T . Identification of source locations in two-dimensional heat equations. Inverse Probl, 2006, 22 (4): 1289- 1305 |
12 | Nair M T , Pereverzev S V , Tautenhahn U . Regularization in hilbert scales under general smoothing conditions. Inverse Problems, 2005, 21 (21): 1851- 1862 |
13 | Park H M , Chung J S . A sequential method of solving inverse natural convection problems. Inverse Probl, 2002, 18 (3): 529- 546 |
14 |
Ryabenḱii V S , Tsynkov S V , Utyuzhnikov S V . Inverse source problem and active shielding for composite domains. Appl Math Lett, 2007, 20 (5): 511- 515
doi: 10.1016/j.aml.2006.05.019 |
15 | Yamamoto M . Conditional stability in determination of force terms of heat equations in a rectangle. Math Comput Modelling, 1993, 18 (1): 79- 88 |
16 |
Yan L , Fu C L , Yang F L . The method of fundamental solutions for the inverse heat source problem. Eng Anal Bound Elem, 2008, 32 (3): 216- 222
doi: 10.1016/j.enganabound.2007.08.002 |
17 | Yan L , Yang F L , Fu C L . A meshless method for solving an inverse spacewise-dependent heat source problem. J Comput Physics, 2009, 228 (1): 123- 136 |
18 | Yang F . The truncation method for identifying an unknown source in the poisson equation. Appl Math Comput, 2011, 22, 9334- 9339 |
19 | Yang F , Fu C L . The modified regularization method for identifying the unknown source on poisson equation. Appl Math Modelling, 2012, 2, 756- 763 |
20 |
Yi Y , Murio D A . Source term identification in 1-D IHCP. Computers Math Appl, 2004, 47 (12): 1921- 1933
doi: 10.1016/j.camwa.2002.11.025 |
21 | Zhao Z Y , You L . A modified Tikhonov regularization method for identifying an unknown source in the heat equation. Acta Math Sci, 2014, 34A, 186- 192 |
22 | Meng Z H , You L , Zhao Z Y , Xie O . Determination of an unknown source in the heat equation by the method of Tikhonov regularization in hilbert scales. J Appl Math Physics, 2014, 2 (2): 42095 |
[1] | Yafeng Li,Qiao Xin,Chunlai Mu. The Discrete Possion Equation and the Heat Equation with the Exponential Nonlinear Term [J]. Acta mathematica scientia,Series A, 2019, 39(4): 773-784. |
[2] | Zhi Wang,Litan Yan,Xianye Yu. Local Times of the Solution to Stochastic Heat Equation with Fractional Noise [J]. Acta mathematica scientia,Series A, 2019, 39(3): 582-595. |
[3] | Xie Ou, Meng Zehong, Zhao Zhenyu, You Lei. A Truncation Method Based on Hermite Functions Expansion for a Cauchy Problem of the Laplace Equation [J]. Acta mathematica scientia,Series A, 2017, 37(3): 457-468. |
[4] | Ba Na, Zheng Lie. Partial Schauder Estimates for the Heat Equation [J]. Acta mathematica scientia,Series A, 2017, 37(2): 307-312. |
[5] | Yang Fan, Fu Chuli, Li Xiaoxiao, Ren Yupeng. Fourier Truncation Regularization for a Class of Nonlinear Backward Heat Equation [J]. Acta mathematica scientia,Series A, 2017, 37(1): 62-71. |
[6] | YANG Fan, FU Chu-Li, LI Xiao-Xiao. The Fourier Regularization Method for Identifying the Unknown Source for the Modified Helmholtz Equation [J]. Acta mathematica scientia,Series A, 2014, 34(4): 1040-1047. |
[7] | ZHAO Zhen-Yu, YOU Lei. A Modified Tikhonov Regularization Method for Identifying an Unknown Source in the Heat Equation [J]. Acta mathematica scientia,Series A, 2014, 34(1): 186-192. |
[8] | FENG Li-Xin, LI Yuan. Wavelet Regularization Method for Determining Heat Flux of Non-standard Inverse Conduction Problem [J]. Acta mathematica scientia,Series A, 2012, 32(4): 709-719. |
[9] | YANG Fan, FU Chu-Li, LI Xiao-Xiao. The Inverse Problem of Identifying the Unknown Source for the Modified Helmholtz Equation [J]. Acta mathematica scientia,Series A, 2012, 32(3): 557-565. |
[10] | YU Hang. Data Assimilation: a Nonstandard Approach to a Heat Conduction Model [J]. Acta mathematica scientia,Series A, 2011, 31(4): 857-865. |
[11] | HAN Chuan-Feng, ZHANG Chao . Solving the Self-adjoint Operator Equation by Iterative Method of Complex Parameter [J]. Acta mathematica scientia,Series A, 2011, 31(4): 887-891. |
[12] | DU Juan, CUI Ming-Gen. Solving the Semilinear Heat Equation with Integral Boundary Conditions in the Reproducing Kernel Space [J]. Acta mathematica scientia,Series A, 2010, 30(1): 245-257. |
[13] | LI Hong-Fang, FU Chu-Li, XIONG Xiang-Qiu, NA Nan. An Optimal Filtering Method for Solving a |Sideways Parabolic Equation [J]. Acta mathematica scientia,Series A, 2009, 29(2): 245-252. |
[14] | WANG Lin-Feng. Estimates of Heat Kernel with Potential on Complete Manifold [J]. Acta mathematica scientia,Series A, 2004, 4(6): 699-713. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 111
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 64
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|