Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (5): 1136-1145.
Previous Articles Next Articles
Received:
2018-06-07
Online:
2019-10-26
Published:
2019-11-08
Contact:
Hui Zhang
E-mail:zhangaqtc@126.com
Supported by:
CLC Number:
Hui Zhang,Juan Xu. Regularity Criteria for the NS and MHD Equations in Terms of Horizontal Components[J].Acta mathematica scientia,Series A, 2019, 39(5): 1136-1145.
1 | Leray J . Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math, 1934, 63 (1): 193- 248 |
2 | Hopf E . Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math Nachr, 1951, 4: 213- 231 |
3 |
Serrin J . On the interior regularity of weak solutions of the Navier-Stokes equations. Arch Rat Mech Anal, 1962, 9: 187- 191
doi: 10.1007/BF00253344 |
4 |
Beirao da Veiga . A new regularity class for the Navier-Stokes equations in Rn. Chinese Ann Math, 1995, 16: 407- 412
doi: 10.1016/0169-7439(95)00032-3 |
5 |
Beirao da Veiga . On the smoothness of a class of weak solutions to the Navier-Stokes equation. J Math Fluid Mech, 2000, 2: 315- 323
doi: 10.1007/PL00000955 |
6 |
Dong B Q , Chen Z M . Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity componenets. J Math Anal Appl, 2008, 338: 1- 10
doi: 10.1016/j.jmaa.2007.05.003 |
7 | 张辉. Morrey-Campanato空间中三维Navier-Stokes方程的正则性准则. 纯粹数学与应用数学, 2013, 29 (2): 140- 145 |
Zhang H . Regularity criteria for the 3D Navier-Stokes equations in Morrey-Campanato space. Pure and Applied Mathematcis, 2013, 29 (2): 140- 145 | |
8 |
Duvaut G , Lions J L . Inquations en thermolasticit et magnetohydrodynamique. Arch Ration Mech Anal, 1972, 46: 241- 279
doi: 10.1007/BF00250512 |
9 |
He C , Xin Z . On the regularity of weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2005, 213: 235- 254
doi: 10.1016/j.jde.2004.07.002 |
10 |
Ni L D , Guo Z G , Zhou Y . Some new regularity criterion for the 3D MHD equations. J Math Anal Appl, 2012, 396: 108- 118
doi: 10.1016/j.jmaa.2012.05.076 |
11 |
Ji E , Lee J . Some regularity criterion for the 3D incompressible magnetohydrodynamics. J Math Anal Appl, 2010, 369: 317- 322
doi: 10.1016/j.jmaa.2010.03.015 |
12 |
Dong B Q , Zhang B Q . The BKM criterion for the 3D Navier-Stokes equations via two velocity components. Nonlinear Analysis:Real World Application, 2010, 11: 2415- 2421
doi: 10.1016/j.nonrwa.2009.07.013 |
13 | Triebel H . Theory of Function Space. Boston: Birkhäuser, 1983 |
14 |
Chen Q L , Miao C X , Zhang Z F . On the well-posedness of the ideal MHD equations in the Triebel-Lizorkin spaces. Arch Rational Mech Anal, 2010, 195: 561- 578
doi: 10.1007/s00205-008-0213-6 |
15 |
Lemarié-Rieusset , Gala S . Multipliers between Sobolev spaces and frational differentiation. J Math Anal Appl, 2006, 322: 1030- 1054
doi: 10.1016/j.jmaa.2005.07.043 |
16 | 张辉. Magneto-Micropolar方程的正则性准则. 应用数学学报, 2014, 37: 487- 496 |
Zhang H . Regularity criterion to the 3D Magneto-Micropolar equations. Acta Math Appl, 2014, 37: 487- 496 | |
17 | 张辉. 乘子空间中广义Navier-Stokes方程弱解的正则性准则. 应用数学, 2014, 27: 618- 622 |
Zhang H . Regularity criteria for the 3D generalized Navier-Stokes equations in terms of two velocity componets. Math Appl, 2014, 27: 618- 622 |
[1] | Na Wang,Shu Wang. The Boundary Layer for MHD Equations in a Plane-Parallel Channel [J]. Acta mathematica scientia,Series A, 2019, 39(4): 738-760. |
[2] | Kai Li,Han Yang,Fan Wang. Study on Weak Solution and Strong Solution of Incompressible MHD Equations with Damping in Three-Dimensional Systems [J]. Acta mathematica scientia,Series A, 2019, 39(3): 518-528. |
[3] | Hua Qiu,Changping Xie,Shaomei Fang. Remarks on Regularity Criteria for 3D Generalized MHD Equations and Boussinesq Equations [J]. Acta mathematica scientia,Series A, 2019, 39(2): 316-328. |
[4] | Zhaoyang Shang. Blow-Up Criterion for Incompressible Magnetohydrodynamics Equations in Besov Space [J]. Acta mathematica scientia,Series A, 2019, 39(1): 67-80. |
[5] | Zhao Jihong. Logarithmical Regularity Criteria in Terms of Pressure for the Three Dimensional Dissipative System Modeling Electro-Hydrodynamics [J]. Acta mathematica scientia,Series A, 2018, 38(3): 549-564. |
[6] | Chen Pengfei. The Inviscid and Non-Resistive Limit for 3D Nonhomogeneous Incompressible MHD Equations with a Slip Boundary Condition [J]. Acta mathematica scientia,Series A, 2018, 38(1): 83-95. |
[7] | Bian Dongfen, Tang Tong. Blow-Up of Smooth Solutions to the Compressible MHD Equations [J]. Acta mathematica scientia,Series A, 2016, 36(4): 715-721. |
[8] | ZHANG Zu-Jin. An Improved Regularity Criterion for the 3D Navier-Stokes Equations in Terms of Two Entries of the Velocity Gradient [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1327-1335. |
[9] | SUN Yu-Juan, DING Qi, MEI Jian-Qin, ZHANG Hong-Qing. Algebro-Geometric Solutions of the D-AKNS Equations [J]. Acta mathematica scientia,Series A, 2013, 33(2): 276-284. |
[10] | LIU Ying, LI Jia. L2 Decay for Weak Solutions of the MHD Equations in Half Space [J]. Acta mathematica scientia,Series A, 2010, 30(4): 1166-1175. |
[11] | LIU Xiao-Feng. New Regularity Conditions for Magneto-hydrodynamics Equations [J]. Acta mathematica scientia,Series A, 2010, 30(2): 335-343. |
[12] | Yu Yongjiang; Li Kaitai. Asymptotic Analysis for MHD Equations on Thin Domains [J]. Acta mathematica scientia,Series A, 2007, 27(4): 594-610. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 130
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 86
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|