Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (5): 1125-1135.
Previous Articles Next Articles
Received:
2018-07-20
Online:
2019-10-26
Published:
2019-11-08
Contact:
Qiuyue Zhang
E-mail:qyzhang0722@163.com
CLC Number:
Qiuyue Zhang. Global Regularity for 3D Generalized Oldroyd-B Type Models with Fractional Dissipation[J].Acta mathematica scientia,Series A, 2019, 39(5): 1125-1135.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Oldroyd J G . Non-Newtonian effects in steady motion of some idealized elastico-viscous liqids. Proc Roy Soc Lond Ser A, 1958, 245: 278- 297
doi: 10.1098/rspa.1958.0083 |
2 | Bird R B , Curtiss C F , Armstrong R C , Hassager O . Dynamics of Polymeric Liquids, Vol 1:Fluid Mechanics. 2nd ed New York: Wiley, 1987 |
3 | Lin F , Liu C , Zhang P . On hydrodynamics of viscoelastic fluids. Comm Pure Appl Math, 2005, 51: 1437- 1471 |
4 |
Guillopé C , Saut J C . Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal, 1990, 15: 849- 869
doi: 10.1016/0362-546X(90)90097-Z |
5 |
Guillopé C , Saut J C . Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroy type. RAIROMod él Math Anal Num ér, 1990, 24: 369- 401
doi: 10.1051/m2an/1990240303691 |
6 | Chemin J Y , Masmoudi N . About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J Math Anal, 2006, 33: 84- 112 |
7 |
Chen Q , Miao C . Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces. Nonlinear Anal, 2008, 68: 1928- 1939
doi: 10.1016/j.na.2007.01.042 |
8 |
Constantin P , Sun W . Remarks on Oldroyd-B and related complex fluid models. Commun Math Sci, 2012, 10: 33- 73
doi: 10.4310/CMS.2012.v10.n1.a3 |
9 |
Fang D , Hieber M , Zi R . Global existence results for Oldroyd-B fluids in exterior domains:the case of non-small coupling parameters. Math Ann, 2013, 357: 687- 709
doi: 10.1007/s00208-013-0914-5 |
10 |
Fang D , Zi R . Global solutions to the Oldroyd-B model with a class of large initial data. SIAM J Math Anal, 2016, 48: 1054- 1084
doi: 10.1137/15M1037020 |
11 |
Hieber M , Naito Y , Shibata Y . Global existence results for Oldroyd-B fluids in exterior domains. J Differ Equ, 2012, 252: 2617- 2629
doi: 10.1016/j.jde.2011.09.001 |
12 |
Lei Z . On 2D viscoelasticity with small strain. Arch Ration Mech Anal, 2010, 198: 13- 37
doi: 10.1007/s00205-010-0346-2 |
13 |
Lei Z , Liu C , Zhou Y . Global existence for a 2D incompressible viscoelastic model with small strain. Commun Math Sci, 2007, 5: 595- 616
doi: 10.4310/CMS.2007.v5.n3.a5 |
14 |
Zi R , Fang D , Zhang T . Global solution to the incompressible Oldroyd-B model in the critical Lp framework:the case of the non-small coupling parameters. Arch Ration Mech Anal, 2014, 213: 651- 687
doi: 10.1007/s00205-014-0732-2 |
15 |
Lions P L , Masmoudi N . Global solutions for some Oldroyd models of non-Newtonian flows. Chinese Ann Math Ser B, 2000, 21: 131- 146
doi: 10.1142/S0252959900000170 |
16 |
Elgndi T M , Rousset F . Global regularity for some Oldroyd type models. Comm Pure Appl Math, 2015, 68 (11): 2005- 2021
doi: 10.1002/cpa.21563 |
17 |
Elgndi T M , Liu J . Global wellposedness to the generalized Oldroyd type models in ${{\mathbb{R}}^3}$. J Diffrential Equations, 2015, 259: 1958- 1966
doi: 10.1016/j.jde.2015.03.026 |
18 |
Constantin P , Kliegl M . Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress. Arch Ration Mech Anal, 2012, 206: 725- 740
doi: 10.1007/s00205-012-0537-0 |
19 |
Masmoudi N . Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Invent Math, 2013, 191: 427- 500
doi: 10.1007/s00222-012-0399-y |
20 |
Qian J . Well-posedness in critical spaces for incompressible viscoelastic fluid system. Nonlinear Anal, 2010, 72: 3222- 3234
doi: 10.1016/j.na.2009.12.022 |
21 |
Sun Y , Zhang Z . Global well-posedness for the 2D micro-macro models in the bounded domain. Comm Math Phys, 2011, 303: 361- 383
doi: 10.1007/s00220-010-1170-0 |
22 | Zhang T, Fang D. Global well-posedness for the incompressible viscoelastic fluids in the critical Lp framework. 2011, arXiv: 1101.5864v2[math.AP] |
23 |
Wu J . Generalized MHD equations. J Differential Equations, 2003, 195: 284- 312
doi: 10.1016/j.jde.2003.07.007 |
24 | Wan R . Global regularity for generalized Hall magneto-hydrodynamics systems. Electron J Differential Equations, 2015, 179: 1- 18 |
25 | Wan R. Global well-posedness to the subcritical Oldroyd-B type models in 2D. 2015, arXiv: 1509.07663v2[math.AP] |
26 |
Yang W , Jiu Q , Wu J . The 3D incompressible magnetohydrodynamic equations with fractional partial dissipation. J Differential Equations, 2019, 266 (1): 630- 652
doi: 10.1016/j.jde.2018.07.046 |
27 |
Kato T , Ponce G . Commutator estimates and the Euler and Navier-Stokes equations. Commun Pure Appl Math, 1988, 41: 891- 907
doi: 10.1002/cpa.3160410704 |
28 | Majda A J , Bertozzi A L . Vorticity and Incopressible Flow. Cambrige: Cambrige University Press, 2001 |
29 |
Bony J M . Calcul symbolique et propagation des sigularites pour les equations aux derivees partielles non lineaires. Ann Sci Ecole Norm Sup, 1981, 14: 209- 246
doi: 10.24033/asens.1404 |
30 | Chemin J Y . Perfect Incompressible Fluids. New York: Clarendon Press, 1998 |
|