[1] Baruch M. Optimization procedure to correct stiffness and flexibility matrices using vibration tests. AIAA Journal, 1978, 16: 1208-1210
[2] Baruch M, Bar-Itzhack I Y. Optimal weighted orthogonalization of measured modes. AIAA Journal, 1978, 16: 346-351
[3] Berman A. Mass matrix correction using an incomplete set of measured modes. AIAA Journal, 1979, 17: 1147-1148
[4] Berman A, Nagy E J. Improvement of a large analytical model using test data. AIAA Journal, 1983, 21: 1168-1173
[5] Wei F S. Stiffness matrix correction from incomplete test data. AIAA Journal, 1980, 18: 1274-1275
[6] Wei F S. Mass and stiffness interaction effects in analytical model modification. AIAA Journal, 1990, 28: 1686-1688
[7] Wei F S. Analytical dynamic model improvement using vibration test data. AIAA Journal, 1990, 28: 174-176
[8] Yang Y B, Chen Y J. A new direct method for updating structural models based on measured modal data. Engineering Structures, 2009, 31: 32-42
[9] Yuan Y. A model updating method for undamped structural systems. Journal of Computational and Applied Mathematics, 2008, 219: 294-301
[10] Yuan Y. A symmetric inverse eigenvalue problem in structural dynamic model updating. Applied Mathematics and Computation, 2009, 213: 516-521
[11] Friswell M I, Mottershead J E. Finite Element Model Updating in Structural Dynamics. Dordrecht: Kluwer Academic Publishers, 1995
[12] Carvalho J, Datta B N, Gupta A, Lagadapati M. A direct method for model updating with incomplete measured data and without spurious modes. Mechanical Systems and Signal Processing, 2007, 21: 2715-2731
[13] Chu M T, Lin W W, Xu S F. Updating quadratic models with no spill-over effect on unmeasured spectral data. Inverse Problems, 2007, 23: 243-256
[14] Chu M T, Datta B N, Lin W W, Xu S F. The spill-over phenomenon in quadratic model updating. AIAA Journal, 2008, 46: 420-428
[15] Chu D, Chu M T, Lin W W. Quadratic model updating with symmetry, positive definiteness, and no spill-over. SIAM J Matrix Anal Appl, 2009, 31: 546-564
[16] Mao X, Dai H. Finite element model updating with positive definiteness and no spill-over. Mechanical Systems and Signal Processing, 2012, 28: 387-398
[17] Bai Z J, Chu D, Sun D. A dual optimization approach to inverse quadratic eigenvalue problems with partial eigenstructure. SIAM Journal on Scientific Computing, 2007, 29: 2531-2561
[18] Lancaster P, Tismenetsky M. The Theory of Matrices (2rd Edition). London: Academic Press, 1985
[19] Ben-Israel A, Greville T N E. Generalized Inverse: Theory and Applications. New York: Wiley, 1974
[20] Brahma S, Datta B. An optimization approach for minimum norm and robust partial quadratic eigenvalue assignment problems for vibrating structures. Journal of Sound and Vibration, 2009, 324: 471-489
[21] Benner P, Laub A J, Mehrmann V. A collection of benchmark examples for the numerical solution of algebraic Ricatti equations I: continuous time case[R]. Chemnitz: TU Chemnitz-Zwickau, 1995 |