[1] Birkhoff G. Dynamical Systems. With an Addendum by Jurgen Moser. Providence, RI: American Mathematical Society, 1966
[2] Gottschalk W H. Orbit-closure decompositions and almost periodic properties. Bull Amer Math Soc, 1944, 50: 915-919
[3] Li T Y, Yorke J A. Period three implies chaos. Amer Math Monthly, 1975, 82: 985-992
[4] Coven E, Smítal J. Entropy-minimality. Acta Math Univ Comen, 1993, 62: 117-121
[5] 王肖义, 黄煜. 不含混沌真子集的Li-Yorke混沌. 数学学报, 2012, 55: 749-756 Wang X Y, Huang Y. Li-Yorke chaos system without a proper subsystem being Li-Yorke chaos. Acta Mathematica Sinica (Chinese Series), 2012, 55: 749-756
[6] 尹建东, 周作领. 熵极小动力系统的复杂性. 数学物理学报, 2015, 35A: 29-35 Yin J D, Zhou Z L. The complexity of entropy-minimal dynamical systems. Acta Mathematica Scientia, 2015, 35A: 29-35
[7] Akin E, Auslander J, Berg K. When is a transitive map chaotic?//Bergelson V, et al. Convergence in Ergodic Theory and Probability. Berlin: Walter de Gruyter, 1996: 25-44
[8] 叶向东, 黄文, 邵松. 拓扑动力系统概论. 北京: 科学出版社, 2008 Ye X D, Huang W, Shao S. An Intrduction to Topological Dynamical Systems. Beijing: Science Press, 2008
[9] Akin E, Kolyada S. Li-Yorke sensitivity. Nonlinearity, 2003, 16: 1421-1433
[10] Huang W, Kolyada S, Zhang G. Auslander-Yorke dichotomy theorem, multi-sensitivity and Lyapunov numbers. http://arxiv.org/abs/1504.00587v1
[11] Huang W, Lu P, Ye X. Measure-theoretical sensitivity and equicontinuity. Israel J Math, 2011, 183: 233-283
[12] Moothathu T K S. Stronger forms of sensitivity for dynamical systems. Nonlinearity, 2007, 20: 2115-2126
[13] Wu X, Chen G. On the large deviations theorem and ergodicity. Commun Nonlinear Sci Numer Simulat, 2016, 30: 243-247
[14] Wu X, Wang J, Chen G. F-Sensitivity and multi-sensitivity of hyperspatial dynamical systems. J Math Anal Appl, 2015, 429: 16-26
[15] 吴新星. 关于d -跟踪性质的一些注记. 中国科学: 数学, 2015, 45: 273-286 Wu X. Some remarks on d-shadowing property. Sci Sin Math, 2015, 45: 273-286
[16] Wu X, Oprocha P, Chen G. On various definitions of shadowing with average error in tracing. 2014, arXiv: 1406.5822
[17] Kolyada S, Rybak O. On the Lyapunov numbers. Colloq Math, 2013, 131: 209-218
[18] Adler R L, Konheim A G, McAndrew M H. Topological entropy. Trans Amer Math Soc, 1965, 114: 309-319
[19] Bowen R. Entropy for group endomorphisms and homogeneous spaces. Trans Amer Math Soc, 1971, 153: 401-414
[20] Blanchard F, Glasner E, Kolyada S, Maas A. On Li-Yorke pairs. J Reine Angew Math, 2002, 547: 51-68
[21] Downarowicz T. Positive topological entropy implies chaos DC2. Proc Amer Math Soc, 2014, 142: 137-149
[22] Sigmund K. On minimal centers of attraction and generic points. J Reine Angew Math, 1977, 295: 72-79
[23] Zhou Z L. Weakly almost periodic point and measure center. Science China, 1993, 36: 142-153
[24] Li J, Tu S. On proximality with Banach density one. J Math Anal Appl, 2014, 416: 36-51
[25] Oprocha P. Minimal systems and distributionally scrambled sets. Bulletin de la Société Mathématique de France, 2012, 140: 401-439
[26] Downarowicz T, Ye X. When every point is either transitive or periodic. Colloq Math, 2002, 93: 137-150 |