Acta mathematica scientia,Series A ›› 2014, Vol. 34 ›› Issue (5): 1327-1335.
• Articles • Previous Articles
ZHANG Zu-Jin
Received:
2013-07-21
Revised:
2014-06-17
Online:
2014-10-25
Published:
2014-10-25
Supported by:
国家自然科学基金(11326138, 11361004)、江西省青年科学基金资助项目(20132BAB211007)和 江西省教育厅科学技术研究资助项目(GJJ13658, GJJ13659) 资助
CLC Number:
ZHANG Zu-Jin. An Improved Regularity Criterion for the 3D Navier-Stokes Equations in Terms of Two Entries of the Velocity Gradient[J].Acta mathematica scientia,Series A, 2014, 34(5): 1327-1335.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Beir\~{a}o da Veiga H. A new regularity class for the Navier-Stokes equations in Rn. Chinese Ann Math Ser B, 1995, 16: 407--412 [2] Cao C S. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete Contin Dyn Syst, 2010, 26: 1141--1151 [3] Cao C S, Titi E S. Regularity criteria for the three-dimensional Navier-Stokes equations. Indiana Univ Math J, 2008, [4] Eskauriaza L, Ser\"egin G A, \v Sver\'ak V. L3, ∞-solutions of Navier-Stokes equations and backward uniqueness. [5] Jia X J, Jiang Z H. An anisotrpic regularity criterion for the 3D Navier-Stokes equations. Commu Pure Appl Anal, 2013, 12: 1299--1306 [6] Jia X J, Zhou Y. Remarks on regularity criteria for the Navier-Stokes equations via one velocity component. Nonlinear Anal Real World Appl, 2014, 15: 239--245 [7] Jia X J, Zhou Y. Regularity criteria for the three-dimensional Navier-Stokes equations involving one entry of the velocity gradient tensor. Preprint, 2014 [8] Kukavica I, Ziane M. Navier-Stokes equations with regularity in one direction. J Math Phys, 2007, 48: 065203, 10 pp [22] Zhang Z J. A Serrin-type reuglarity criterion for the Navier-Stokes equations via one velocity component. Commun Pure Appl Anal, 2013, 12: 117--124 [28] Zhou Y. A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component. [29] Zhou Y. On regularity criteria in terms of pressure for the Navier-Stokes equations in R3. Proc Amer Math Soc, 2006, 134: 149--156 [30] Zhou Y. Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain. Math Ann, 2004, 328: 173--192 |
[1] | Zhao Jihong. Logarithmical Regularity Criteria in Terms of Pressure for the Three Dimensional Dissipative System Modeling Electro-Hydrodynamics [J]. Acta mathematica scientia,Series A, 2018, 38(3): 549-564. |
[2] | YANG Xin-Guang, WANG Hong-Jun, LI Jun-Tao. Uniform Attractors for the 2D Non-Autonomous Navier-Stokes Equation with Weak Damping [J]. Acta mathematica scientia,Series A, 2014, 34(4): 828-840. |
[3] | GAO Zhen-Sheng, JIANG Fei, WANG Wei-Wei. Semi-Strong Solutions to Hydrodynamic Flow of Liquid Crystals [J]. Acta mathematica scientia,Series A, 2014, 34(2): 367-377. |
[4] | DONG Jian-Wei, ZHANG You-Lin, WANG Yan-Ping. Analysis of the Stationary Quantum Navier-Stokes Equations in one Space Dimension [J]. Acta mathematica scientia,Series A, 2013, 33(4): 719-727. |
[5] |
SONG Hong-Li, GUO Zhen-Hua.
Existence of Global Strong Solutions and Interface Behavior of Solutions for 1D Compressible Navier-Stokes Equations with Free Boundary Value Problem [J]. Acta mathematica scientia,Series A, 2013, 33(4): 601-620. |
[6] | BIAN Dong-Fen, YUAN Bao-Quan. Regularity of Weak Solutions to the Generalized Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1601-1609. |
[7] | ZHAO Cai-De. H1-uniform Attractor for 2D Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1416-1430. |
[8] | YUAN Hong-Jun, WANG Shu. The Zero-Mach Limit of the Compressible Convection [J]. Acta mathematica scientia,Series A, 2011, 31(1): 53-63. |
[9] | SUN Jian-Zhu, FAN Ji-Shan. Regularity Criteria for a Two-fluid Model of the Truncated Euler Equations [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1693-1698. |
[10] | SHI Dong-Yang, WANG Hui-Min. The Lumped Mass Nonconforming Finite Element Approximation for the Nonstationary Navier-Stokes Equations on Anisotropic Meshes [J]. Acta mathematica scientia,Series A, 2010, 30(4): 1018-1029. |
[11] |
Li Kaitai;Jia Huilian.
The Navier-Stokes Equations in Stream Layer or on Stream Surface and a Dimension Split Method [J]. Acta mathematica scientia,Series A, 2008, 28(2): 266-282. |
[12] |
Zhang Ting.
Discontinuous Solutions of the Navier-Stokes Equations for Compressible Flow with Density-Dependent Viscosity [J]. Acta mathematica scientia,Series A, 2008, 28(2): 214-221. |
[13] | Dong Boqing; Li Yongsheng. Large Time Behavior of the Modified Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2006, 26(4): 498-505. |
[14] | He Yinnian. Optimum Nonlinear Galerkin Algorithm for the Penalized Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 1998, 18(3): 251-256. |
[15] | Yin Huicheng. The Global Existence of Solutions for Three Dimensional Compressible Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 1998, 18(1): 19-24. |
|