Acta mathematica scientia,Series A ›› 2014, Vol. 34 ›› Issue (3): 626-637.
• Articles • Previous Articles Next Articles
MI Yong-Sheng1,2, MU Chun-Lai2, WU Yun-Long1
Received:
2011-07-28
Revised:
2013-12-15
Online:
2014-06-25
Published:
2014-06-25
Supported by:
国家自然科学基金(11371384)和重庆基础与前沿基金(cstc2013jcyjA0940)资助
CLC Number:
MI Yong-Sheng, MU Chun-Lai, WU Yun-Long. Global Existence and Blow-up of Solutions to a Doubly Degenerate Parabolic System with Nonlinear Boundary Conditions[J].Acta mathematica scientia,Series A, 2014, 34(3): 626-637.
[1] Astrita G, Marrucci G. Principles of Non-Newtonian Fluid Mechanics. New York: McGraw-Hill, 1974 [7] Vazquez J L. The Porous Medium Equations: Mathematical Theory. Oxford: Oxford University Press, 2007 [9] Pao C V. Nonlinear Parabolic and Elliptic Equation. New York: Plenum, 1992 [11] Fujita H. On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α. J Fac Sci Univ Tokyo Sect I, 1966, 13: 109--124 [12] Deng K, Levine H A. The role of critical exponents in blow-up theorems: the sequel. J Math Anal Appl, 2000, 243: 85--126 [13] Ferreira R, de Pablo A, Quiros F, Rossi J D. The blow-up profile for a fast diffusion equation with a nonlinear boundary condition. Rocky Mountain J Math, 2003, 33: 123--146 [14] Quiros F, Rossi J D. Blow-up set and Fujita-type curves for a degenerate parabolic system with nonlinear conditions. [15] Galaktionov V A, Levine H A. On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary. Israel J Math, 1996, 94: 125--146 [16] Andreucci D, Tedeev A F. Optimal bounds and blow-up phenomena for parabolic problems in narrowing domains. [17] Levine H A. The role of critical exponents in blow up theorems. SIAM Rev, 1990, 32: 262--288 [18] Galaktionov V A, Levine H A. A general approach to critical Fujita exponents and systems. Nonlinear Anal TMA, 1998, 34: 1005--1027 [19] Jin C H, Yin J X. Critical exponents and non-extinction for a fast diffusive polytropic filtration equation with nonlinear boundary sources. Nonlinear Anal, 2007, 67: 2217--2223 [20] Kalashnikov A S. On a nonlinear equation appearing in the theory of non-stationary filtration. Trudy Seminara I G Petrovski (in Russian), 1978 [21] Lieberman G M. Second Order Parabolic Differential Equations. River Edge: World Scientific, 1996 [24] Samarskii A A, Galaktionov V A, Kurdyumov S P, Mikhailov A P. Blow-up in Quasilinear Parabolic Equations. Berlin: Walter de Gruyter, 1995 |
[1] | Sun Baoyan. Lower Bound of Blow-Up Time for a p-Laplacian Equation with Nonlocal Source [J]. Acta mathematica scientia,Series A, 2018, 38(5): 911-923. |
[2] | Zhao Yuanzhang, Ma Xiangru. Blow-Up Analysis for a Nonlocal Reaction-Diffusion Equation with Variant Diffusion Coefficient [J]. Acta mathematica scientia,Series A, 2018, 38(4): 750-769. |
[3] | Liu Dengming, Zeng Xianzhong, Mu Chunlai. A Blow-up Result for a Higher-Order Damped Hyperbolic System with Nonlinear Memory Terms [J]. Acta mathematica scientia,Series A, 2018, 38(2): 304-312. |
[4] | Su Xiao, Wang Shubin. Finite Time Blow-Up for the Damped Semilinear Wave Equations with Arbitrary Positive Initial Energy [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1085-1093. |
[5] | Ma Lingwei, Fang Zhongbo. Lower Bounds of Blow-up Time for a Reaction-Diffusion Equation with Weighted Nonlocal Sources and Robin Type Boundary Conditions [J]. Acta mathematica scientia,Series A, 2017, 37(1): 146-157. |
[6] | Yang Lingyan, Li Xiaoguang, Chen Ying. A Sharp Threshold of Blow-Up of a Class of Schrödinger-Hartree Equations [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1117-1123. |
[7] | Liu Yang. Potential Well and Application to Non-Newtonian Filtration Equations at Critical Initial Energy Level [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1211-1220. |
[8] | Ling Zhengqiu, Wang Zejia. Blow-Up Questions of Solutions to a Class of p-Laplace Equation with Dissipative Gradient Term [J]. Acta mathematica scientia,Series A, 2016, 36(5): 958-964. |
[9] | Bian Dongfen, Tang Tong. Blow-Up of Smooth Solutions to the Compressible MHD Equations [J]. Acta mathematica scientia,Series A, 2016, 36(4): 715-721. |
[10] | Ling Zhengqiu, Qin Siqian. Coupled Semilinear Parabolic System with Nonlinear Nonlocal Boundary Condition [J]. Acta mathematica scientia,Series A, 2015, 35(2): 234-244. |
[11] | Wang Hua, He Yijun. Blow-up of Solutions for a Semilinear Hyperbolic Equation with Variable Exponent and Positive Energy [J]. Acta mathematica scientia,Series A, 2015, 35(2): 288-293. |
[12] | LING Zheng-Qiu, QIN Sai-Qan. Blow-up and Global Boundedness for a Degenerate Parabolic System with Positive Boundary Value Condition [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1061-1070. |
[13] |
LI Yu-Huan, MI Yong-Sheng, MU Chun-Lai.
PROPERTIES OF POSITIVE SOLUTIONS FOR A NONLOCAL NONLINEAR DIFFUSION EQUATION WITH NONLOCAL NONLINEAR BOUNDARY CONDITION [J]. Acta mathematica scientia,Series A, 2014, 34(3): 748-758. |
[14] | LING Zheng-Qiu, ZHOU Ze-Wen. Blow-up and Global Existence of Solutions to a Degenerate Parabolic System with Nonlocal Boundaries [J]. Acta mathematica scientia,Series A, 2014, 34(2): 338-346. |
[15] | SONG Wen-Jing, GUO Bin, GAO Wen-Jie. Blow-up and Global Boundedness for a Weakly Coupled Parabolic System with Variable Exponents [J]. Acta mathematica scientia,Series A, 2013, 33(2): 285-291. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 35
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 129
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|