Acta mathematica scientia,Series A ›› 2010, Vol. 30 ›› Issue (6): 1485-1494.

• Articles • Previous Articles     Next Articles

Some New Results about Asymptotic Properties of Additive Functionals of Brownian Motion

 CHEN Chuan-Zhong1, HAN Xin-Fang2, MA Li3   

  1. 1.Department of Mathematics and Statistics, Hainan Normal University, Haikou 571158;2.School of Mathematical Science and Computing
    Technology, Central South University, Changsha 410075|Institute of Applied Mathematics, AMSS, CAS, Beijing 100190;3.Department of Mathematics and Statistics, Concordia University, Montreal H4B 1R6, Canada
  • Received:2008-11-30 Revised:2009-09-15 Online:2010-12-25 Published:2010-12-25
  • Supported by:

    国家自然科学基金(10961012)、海南省自然科学基金(80529)和海南师范大学博士基金资助

Abstract:

Let B=(Ω,F,(Ft)t0,(Bt)t0,(Px)x\inRd) be the classical Brownian motion on L2(Rd,m), which is associated with a symmetric Dirichlet form (E,D(E)). For uD(E)u~(Bt)u~(B0)=Mtu+Ntu is Fukushima decomposition, where u~ is a quasi-continuous version of uMtu the martingale part and Ntu  the zero energy part. In this paper, the authors first study transformed process B^ of B, which is determined by the supermartingale Ltu:=eMtu12Mut, they get some properties of its transition semigroup; Then, they study the asymptotic properties of Ntu, they get that if Ltu  is a martingale, u is bounded and
uKd1, ||E.(eMtu)||q<, then for every xRd

limt1tlogEx(eNtu)=inffD(E)bfL2(Rd,m)=1(E(f,f)+E(f2,u)),
where
 D(E)b=D(E)L(Rd,m).

Key words: Dirichlet form, Fukushima decomposition, Brownian motion, Transition density function Asymptotic property

CLC Number: 

  • 31C25
Trendmd