Acta mathematica scientia,Series A ›› 2010, Vol. 30 ›› Issue (6): 1485-1494.

• Articles • Previous Articles     Next Articles

Some New Results about Asymptotic Properties of Additive Functionals of Brownian Motion

 CHEN Chuan-Zhong1, HAN Xin-Fang2, MA Li3   

  1. 1.Department of Mathematics and Statistics, Hainan Normal University, Haikou 571158;2.School of Mathematical Science and Computing
    Technology, Central South University, Changsha 410075|Institute of Applied Mathematics, AMSS, CAS, Beijing 100190;3.Department of Mathematics and Statistics, Concordia University, Montreal H4B 1R6, Canada
  • Received:2008-11-30 Revised:2009-09-15 Online:2010-12-25 Published:2010-12-25
  • Supported by:

    国家自然科学基金(10961012)、海南省自然科学基金(80529)和海南师范大学博士基金资助

Abstract:

Let B=(Ω,F,(Ft)t0,(Bt)t0,(Px)x\inRd) be the classical Brownian motion on L2(Rd,m), which is associated with a symmetric Dirichlet form (E,D(E)). For uD(E)˜u(Bt)˜u(B0)=Mut+Nut is Fukushima decomposition, where ˜u is a quasi-continuous version of uMut the martingale part and Nut  the zero energy part. In this paper, the authors first study transformed process ˆB of B, which is determined by the supermartingale Lut:=eMut12Mut, they get some properties of its transition semigroup; Then, they study the asymptotic properties of Nut, they get that if Lut  is a martingale, u is bounded and
uKd1, ||E.(eMut)||q<, then for every xRdlimt1tlogEx(eNut)=inffD(E)bfL2(Rd,m)=1(E(f,f)+E(f2,u)),

where
 D(E)b=D(E)L(Rd,m).

Key words: Dirichlet form, Fukushima decomposition, Brownian motion, Transition density function Asymptotic property

CLC Number: 

  • 31C25
Trendmd