[1]Bekenstein J D. Black hole and entropy. Phys Rev, 1973, ]D7: 2333
[2]Hawking S W. Particle Creation by black hole. Commun Math Phys, 1975, 43:199
[3]Bardeen J M, Carter B, Hawking S W. The four laws of black hole mechanics. Math Phys, 1973,31:161
[4]Unruh W G, Wald R M. Acceleration radiation and the generalized second la
w of thermodynamics. Phys Rev, 1982,
[STHZ]
[WTHZ]D25
[WTBZ]
[STBZ]:947
[5]Frolov V P, Page D N. Proof of the generalized second law for quasistatio
nary semiclassical black hole. Phys Rev Lett, 1993,71:3902
[6]Wald R M. Nernst theorem and black hole thermodynamics. Phys Rev, 1997, D56:6467
[7]Lee H, Kim S W, Kim W T. Nonvanishing entropy of extremal charged black hle. Phys Rev, 1996, D54:6559
[8]Zhao R, Zhang L.C, Wu Y Q. The Nernst theorem and entropy of the ReissnerNordstrom black hole. Gen Rel Grav, 2000,32:1639
[9]Hawking S W G. Horowitz S. Ross, entropy, area, and black hole pairs. Phys Rev. 1995,D51:4302
[10]Gibbons G W, Kallosh R E. Topology, entropy, and witten index of dilaton black holes. Phys Rev, 1995,D51:2839
[11] Teitelbom C. Action and entropy of extreme and nonextreme black holes. Phys Rev, 1995,
[D51:4315
[12] Ghosh A. Mitra P. Comment on Extreme state of a charged black hole in agrand canonical ensemble. Phys Rev Lett, 1996, 77:4848
[13] Loranz D J, et al. Thermal divergences on the event horizons of twodimensional black holes. Phys Rev, 1995, D52:4554
[14] Zaslavskii O B. Geometry of nonextreme black holes near the extreme state. Phys Rev, 1997,D56:2188
[15] Li X, Zhao Z. Entropy of a Vaidya black hole. Phys Rev, 2000, D62:104001
[16]Zhao R, Zhang J F, Zhang L C. Entropy of Schwarzschildde Sitter black
hole in Nonthermalequilibrium. Modern Physics Letters A, 2001, 16:719
[17] Newmann E, Penrose R. An appoach to gravitional radiation by a method of
spin coefficients. J Math Phys, 1963:566
[18] G′t Hooft. On the quantum structure of a black hole. Nucl Phys, 1985, B256:727
[19] Bekenstel J D. Generalized second law of thermodynamics in blackhole
physics. Phys Rev, 1974,
[STHZ]
[WTHZ]D9
[WTBZ]
[STBZ]:3292
[20] Lousto C O. The fourth law of blackhole thermodynamics. Nucl Phys, 1993,B410:155
[21] Kim H. New black hole solutions in BransDicke theory of gravity. Phys
Rev, 1999,
[STHZ]
[WTHZ]D60
[WTBZ]
[STBZ]:024001
[ZK)]
[22]赵峥, 朱建阳. 能斯特定理与黑洞的普朗克绝对熵. 物理学报. 1999, 48:1558;
刘文彪, 朱建阳, 赵峥. Nernst 定理ReissnerNordstrom 黑洞Dirac场的熵. 物理学报, 2000,49:581;
Zhao Z, Zhu J Y, Liu W B. Entropy of KerrNewman black hole continuously goes t
o zero when the hole changes from nonextreme case to extreme case. Chin. Phys. Lett. 1999,16:698
[23]
[ZK(#]Liu Wenbiao, Zhao Zheng. Entropy of Dirac field in KerrNewman bl
ack hole. Phys Rev, 2000,D61: 063003
[24]\高长军, 赵峥. 用膜模型计算 Schwarzschildde Sitter 黑洞的熵. 北京师范大学学报(自然科学版), 2000,36:332 |