Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (3): 992-1012.
Huajun Zeng1,2,Ruixing Ming1,2,Peijuan Su1,2,Shaohang Huang1,2,Min Xiao1,3,*()
Received:
2024-06-18
Revised:
2024-09-13
Online:
2025-06-26
Published:
2025-06-20
Supported by:
CLC Number:
Huajun Zeng, Ruixing Ming, Peijuan Su, Shaohang Huang, Min Xiao.
[1] | Rosenbaum P R, Rubin D B. The central role of the propensity score in observational studies for causal effects. Biometrika, 1983, 70(1): 41-55 |
[2] | Rosenbaum P R, Rubin D B. Constructing a control group using multivariate matched sampling models that incorporate the propensity score. Amer Statist, 1985, 39(1): 33-38 |
[3] | Caron A, Baio G, Manolopoulou I. Estimating individual treatment effects using non-parametric regression models: A review. J Roy Statist Soc Ser A, 2022, 185(3): 1115-1149 |
[4] | Yao L Y, Chu Z X, Li S, et al. A survey on causal inference. ACM Transactions on Knowledge Discovery from Data, 2021, 15(5): 1-46 |
[5] | Sarraju A, Ward A, Li J, et al. Personalizing cholesterol treatment recommendations for primary cardiovascular disease prevention. Sci Rep, 2022, 12(1): Article 23 |
[6] | Sorace M. The ties that unbind: Intergovernmental decision rules and the policy-opinion link. J Eur Public Policy, 2023, 30(8): 1609-1632 |
[7] |
Zhang Z W, Liu W, Zhang B, et al. Causal inference with missing exposure information: Methods and applications to an obstetric study. Stat Methods Med Res, 2016, 25(5): 2053-2066
pmid: 24318273 |
[8] | Abrevaya J, Hsu Y C, Lieli R P. Estimating conditional average treatment effects. J Bus Econom Statist, 2015, 33(4): 485-505 |
[9] | Li L, Zhou N W, Zhu L X. Outcome regression-based estimation of conditional average treatment effect. Ann Inst Statist Math, 2022, 74(5): 987-1041 |
[10] | Kudraszow N L, Vieu P. Uniform consistency of kNN regressors for functional variables. Statist Probab Lett, 2013, 83(8): 1863-1870 |
[11] | Ling N X, Meng S Y, Vieu P. Uniform consistency rate of kNN regression estimation for functional time series data. J Nonparametr Stat, 2019, 31(2): 451-468 |
[12] | Friedman J H. Greedy function approximation: A gradient boosting machine. Ann Statist, 2001, 29: 1189-1232 |
[13] | Chen T Q, Guestrin C. Xgboost: A scalable tree boosting system//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, 785-794 |
[14] | Breiman L. Random forests. Mach Learn, 2001, 45(1): 5-32 |
[15] | Wager S, Athey S. Estimation and inference of heterogeneous treatment effects using random forests. J Amer Statist Assoc, 2018, 113(523): 1228-1242 |
[16] | Athey S, Wager S. Estimating treatment effects with causal forests: An application. Observ Stud, 2019, 5(2): 37-51 |
[17] | Little R J, D'agostino R, Cohen M L, et al. The prevention and treatment of missing data in clinical trials. New Engl J Med, 2012, 367(14): 1355-1360 |
[18] |
Ocampo A, Schmidli H, Quarg P, et al. Identifying treatment effects using trimmed means when data are missing not at random. Pharm Stat, 2021, 20(6): 1265-1277
doi: 10.1002/pst.2147 pmid: 34169641 |
[19] | Kuzmanovic M, Hatt T, Feuerriegel S. Estimating conditional average treatment effects with missing treatment information//Proceedings of the 26th International Conference on Artificial Intelligence and Statistics. Valencia: PMLR, 2023, 746-766 |
[20] | Stensrud M J, Robins J M, Sarvet A, et al. Conditional separable effects. J Amer Statist Assoc, 2023, 118(544): 2671-2683 |
[21] | Zhao A Q, Peng D. To adjust or not to adjust? Estimating the average treatment effect in randomized experiments with missing covariates. J Amer Statist Assoc, 2024, 119(545): 450-460 |
[22] | 苗旺, 刘春辰, 耿直. 因果推断的统计方法. 中国科学: 数学, 2018, 48(12): 1753-1778 |
Miao W, Liu C C, Geng Z. Statistical approaches for causal inference (in Chinese). Sci Sin Math, 2018, 48(12): 1753-1778 (in Chinese). | |
[23] | Greenland S, Pearl J, Robins J M. Confounding and collapsibility in causal inference. Statist Sci, 1999, 14(1): 29-46 |
[24] | Geng Z, Guo J H, Fung W K. Criteria for confounders in epidemiological studies. J R Stat Soc Ser B Stat Methodol, 2002, 64(1): 3-15 |
[25] | Han P S. Multiply robust estimation in regression analysis with missing data. J Amer Statist Assoc, 2014, 109(507): 1159-1173 |
[26] | Ferraty F, Laksaci A, Tadj A, et al. Rate of uniform consistency for nonparametric estimates with functional variables. J Statist Plann Inference, 2010, 140(2): 335-352 |
[27] | Hill J L. Bayesian nonparametric modeling for causal inference. J Comput Graph Statist, 2011, 20(1): 217-240 |
[28] | Burba F, Ferraty F, Vieu P. k-Nearest neighbour method in functional nonparametric regression. J Nonparametr Stat, 2009, 21(4): 453-469 |
[29] | Ezzahrioui M, Ould-Saïd E. Asymptotic normality of a nonparametric estimator of the conditional mode function for functional data. J Nonparametr Stat, 2008, 20(1): 3-18 |
[30] | 黄绍航. 随机缺失下条件平均处理效果的 k 近邻核估计. 杭州: 浙江工商大学, 2022 |
Huang S H. K-nearest Neighbor Kernel Estimation of Conditional Average Treatment Effect Under Random Missing Data. Hangzhou: Zhejiang Gongshang University, 2022 |
[1] | Zhenmin Rao, Jiangfeng Wang, Kang Hu, Shan He. Least Squares Estimators of General Linear Model with Censoring Indicators Missing at Random [J]. Acta mathematica scientia,Series A, 2025, 45(3): 919-933. |
[2] | Changming Yin,Yuexin Shi. Large Sample Properties of Generalized Estimating Equations with Adaptive Designs for Longitudinal Data [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1925-1936. |
[3] | Keang Fu,Li Ding,Junqiao Li. Asymptotics for the Self-Weighted M-Estimation of Nonlinear Autoregressive Models with Heavy-Tailed Errors [J]. Acta mathematica scientia,Series A, 2020, 40(2): 475-483. |
[4] | Yijia Ma,Liugen Xue,Fei Lu. Statistical Inference in Partially Nonlinear Varying-Coefficient Errors-in-Variables Models with Missing Responses [J]. Acta mathematica scientia,Series A, 2020, 40(2): 460-474. |
[5] | Wang Jixia, Xiao Qingxian. Local Estimation of the Diffusion Coefficient for Time-Inhomogeneous Diffusion Models [J]. Acta mathematica scientia,Series A, 2015, 35(2): 332-344. |
[6] | Chen Panpan, Feng Sanying, Xue Liugen. Statistical Inference for Semiparametric Varying Coefficient Partially Linear Model with Missing Data [J]. Acta mathematica scientia,Series A, 2015, 35(2): 345-358. |
[7] | YANG Qing-Long, GUO Li-Sha, LIU Yan-Yan. A General Class of Marginal Semiparametric Hazards Model with Multivariate Failure Time Data [J]. Acta mathematica scientia,Series A, 2014, 34(3): 530-539. |
[8] | WANG Cheng-Yong. A Semiparametric Smooth Transition Regression Model and Its Series Estimator [J]. Acta mathematica scientia,Series A, 2012, 32(4): 797-807. |
[9] | FENG San-Ying, XUE Liu-Gen. Maximum Empirical Likelihood Estimators in Nonlinear Semiparametric EV Regression Models [J]. Acta mathematica scientia,Series A, 2012, 32(4): 729-743. |
[10] | WEI Chuan-Hua. Estimation in Partially Linear Varying-Coefficient Errors-in-Variables Models with Missing Responses [J]. Acta mathematica scientia,Series A, 2010, 30(4): 1042-1054. |
[11] | WANG Hong-Ning, YU Huan-Ran. Robust Nonparametric Regression with Simultaneous Scale Curve Estimation Based on Dependent Observations [J]. Acta mathematica scientia,Series A, 2010, 30(3): 835-847. |
[12] | ZHANG Juan, CUI Heng-Jian. Weighted Adjust LS Estimation |in EV Model with Missing Data [J]. Acta mathematica scientia,Series A, 2009, 29(6): 1465-1476. |
[13] | Xia Tian; Tang Niansheng; Wang Xueren; Zhang Wenzhuan. Asymptotic Properties in Nonlinear Reproductive Dispersion Models with Random Effects [J]. Acta mathematica scientia,Series A, 2007, 27(1): 146-154. |
|