Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (3): 807-823.
Previous Articles Next Articles
Wangjin Yao1(),Huiping Zhang2,*(
)
Received:
2024-05-07
Revised:
2024-11-27
Online:
2025-06-26
Published:
2025-06-20
Supported by:
CLC Number:
Wangjin Yao, Huiping Zhang. Multiple Solutions for a Class of
[1] | Almeida R. A Caputo fractional derivative of a function with respect to another function. Commun Nonlinear Sci Numer Simul, 2017, 44: 460-481 |
[2] | Bai L, Nieto J J. Variational approach to differential equations with not instantaneous impulses. Appl Math Lett, 2017, 73: 44-48 |
[3] | Bai L, Nieto J J, Wang X Y. Variational approach to non-instantaneous impulsive nonlinear differential equations. J Nonlinear Sci Appl, 2017, 10(5): 2440-2448 |
[4] | Bonanno G, Marano S A. On the structure of the critical set of non-differentiable functions with a weak compactness condition. Appl Anal, 2010, 89(1): 1-10 |
[5] | Bonanno G, Rodríguez-López R, Tersian S. Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract Calc Appl Anal, 2014, 17(3): 717-744 |
[6] | Hernández E, O'Regan D. On a new class of abstract impulsive differential equations. Proc Amer Math Soc, 2013, 141(5): 1641-1649 |
[7] | Khaliq A, Mujeeb R U. Existence of weak solutions for ψ-Caputo fractional boundary value problem via variational methods. J Appl Anal Comput, 2021, 11(4): 1768-1778 |
[8] | Khaliq A, Rehman M U. On variational methods to non-instantaneous impulsive fractional differential equation. Appl Math Lett, 2018, 83: 95-102 |
[9] | Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. New York: Elsevier, 2006 |
[10] | Li D P, Chen F Q, Wu Y H, An Y K. Multiple solutions for a class of p-Laplacian type fractional boundary value problems with instantaneous and non-instantaneous impulses. Appl Math Lett, 2020, 106: 106352 |
[11] | Li D P, Li Y K, Chen F Q, Feng X Z. Instantaneous and non-Instantaneous impulsive boundary value problem involving the generalized ψ-Caputo fractional derivative. Fractal Fract, 2023, 7( 3): 206 |
[12] | Li Y K, Li D P, Jiang Y, Feng X Z. Solvability for the ψ-Caputo-type fractional differential system with the generalized p-Laplacian operator. Fractal Fract, 2023, 7( 6): 450 |
[13] | 廖丹, 张慧萍, 姚旺进. 基于变分方法的脉冲微分方程 Neumann 边值问题多重解的存在性. 数学物理学报, 2023, 43A(2): 447—457 |
Liao D, Zhang H P, Yao W J. Variational approach to existence of multiple solutions for Neumann boundary value problem of impulsive differential equations. Acta Math Sci, 2023, 43A(2): 447-457 | |
[14] | Nieto J J, O'Regan D. Variational approach to impulsive differential equations. Nonlinear Anal: RWA, 2009, 10(2): 680-690 |
[15] | Osler T J. The fractional derivative of a composite function. SIAM J Math Anal, 1970, 1(2): 288-293 |
[16] | Ricceri B. A further three critical points theorem. Nonlinear Anal: TMA, 2009, 71(9): 4151-4157 |
[17] | Rodríguez-López R, Tersian S. Multiple solutions to boundary value problem for impulsive fractional differential equations. Fract Calc Appl Anal, 2014, 17(4): 1016-1038 |
[18] | Tian Y, Ge W G. Applications of variational methods to boundary-value problem for impulsive differential equations. Proc Edinb Math Soc, 2008, 51(2): 509-527 |
[19] |
Tian Y, Zhang M. Variational method to differential equations with instantaneous and non-instantaneous impulses. Appl Math Lett, 2019, 94: 160-165
doi: 10.1016/j.aml.2019.02.034 |
[20] | Wang H H, Lu D, Lu H Q. Multiplicity results for second order impulsive differential equations via variational methods. Engineering, 2021, 13(2): 82-93 |
[21] | Wang Y N, Li C D, Wu H J, Deng H. Existence of solutions for fractional instantaneous and non-instantaneous impulsive differential equations with perturbation and Dirichlet boundary value. Discrete Contin Dyn Syst Ser S, 2022, 15(7): 1767-1776 |
[22] | Wei Y F, Shang S M, Bai Z B. Applications of variational methods to some three-point boundary value problems with instantaneous and noninstantaneous impulses. Nonlinear Anal Model Control, 2022, 27(3): 466-478 |
[23] | Yao W J. Variational approach to non-instantaneous impulsive differential equations with p-Laplacian operator. AIMS Math, 2022, 7(9): 17269-17285 |
[24] | 姚旺进. 一类含有 p-Laplacian 算子的脉冲微分方程解的存在性和多重性. 应用数学学报, 2021, 44(4): 532—541 |
Yao W J. Existence and multiplicity of solutions for a class of impulsive differential equations with p-Laplacian operator. Acta Math Appl Sin, 2021, 44(4): 532-541 | |
[25] | Zhang W, Liu W B. Variational approach to fractional Dirichlet problem with instantaneous and non-instantaneous impulses. Appl Math Lett, 2020, 99: 105993 |
[26] | Zhang W, Ni J B. Study on a new p-Laplacian fractional differential model generated by instantaneous and non-instantaneous impulsive effects. Chaos Solitons Fractals, 2023, 168: 113143 |
[27] | Zhao Y L, Luo C L, Chen H B. Existence results for non-instantaneous impulsive nonlinear fractional differential equation via variational methods. Bull Malays Math Sci Soc, 2020, 43: 2151-2169 |
[28] | Zhao Y L, Chen H B, Xu C J. Nontrivial solutions for impulsive fractional differential equations via Morse theory. Appl Math Comput, 2017, 307: 170-179 |
[29] | Zhou J W, Deng Y M, Wang Y N. Variational approach to p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses. Appl Math Lett, 2020, 104: 106251 |
[30] | 姚旺进. 基于变分方法的脉冲微分方程耦合系统解的存在性和多重性. 数学物理学报, 2020, 40A(3): 705—716 |
Yao W J. Existence and multiplicity of solutions for a coupled system of impulsive differential equations via variational method. Acta Math Sci, 2020, 40A(3): 705-716 |
|