Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (3): 726-747.
Previous Articles Next Articles
Zhendong Feng1(),Fei Guo2,3,*(
),Yuequn Li2(
)
Received:
2024-01-25
Revised:
2024-10-15
Online:
2025-06-26
Published:
2025-06-20
Supported by:
CLC Number:
Zhendong Feng, Fei Guo, Yuequn Li. Breakdown of Solutions to a Weakly Coupled System of Semilinear Wave Equations[J].Acta mathematica scientia,Series A, 2025, 45(3): 726-747.
[1] |
Agemi R, Kurokawa Y, Takamura H. Critical curve for ![]() ![]() |
[2] | Chen W H. Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms. Nonlinear Anal, 2021, 202: 112160 |
[3] | Chen W H, Palmieri A. Blow-up result for a semilinear wave equation with a nonlinear memory term.// Cicognani M, Del Santo D, Parmeggiani A, Reissig M. Anomalies in Partial Differential Equations. Cham: Springer, 2021, 43: 77-97 |
[4] | Chen W H, Reissig M. Blow-up of solutions to Nakao's problem via an iteration argument. J Differential Equations, 2021, 275: 733-756 |
[5] | D'Abbicco M. The threshold of effective damping for semilinear wave equations. Math Methods Appl Sci, 2015, 38(6): 1032-1045 |
[6] | Friedman A. Partial Differential Equations. New York: Krieger, 1976 |
[7] | Georgiev V, Lindblad H, Sogge C D. Weighted Strichartz estimates and global existence for semilinear wave equations. Amer J Math, 1997, 119(6): 1291-1319 |
[8] |
Glassey R T. Existence in the large for ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
[9] | Glassey R T. Finite-time blow-up for solutions of nonlinear wave equations. Math Z, 1981, 177(3): 323-340 |
[10] | Ikeda M, Sobajima M. Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data. Math Ann, 2018, 372(3/4): 1017-1040 |
[11] | Ikeda M, Sobajima M, Wakasa K. Blow-up phenomena of semilinear wave equations and their weakly coupled systems. J Differential Equations, 2019, 267(9): 5165-5201 |
[12] | Jiao H, Zhou Z. An elementary proof of the blow-up for semilinear wave equation in high space dimensions. J Differential Equations, 2003, 189(2): 355-365 |
[13] | John F. Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math, 1979, 28: 235-268 |
[14] | Kurokawa Y, Takamura H, Wakasa K. The blow-up and lifespan of solutions to systems of semilinear wave equation with critical exponents in high dimensions. Differential Integral Equations, 2012, 25(3/4): 363-382 |
[15] | Lai N A, Takamura H, Wakasa K. Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent. J Differential Equations, 2017, 263(9): 5377-5394 |
[16] | Li Y C, Wang C M. On a partially synchronizable system for a coupled system of wave equations in one dimension. Commun Anal Mech, 2023, 15(3): 470-493 |
[17] | Lindblad H, Sogge C D. Long-time existence for small amplitude semilinear wave equations. Amer J Math, 1996, 118(5): 1047-1135 |
[18] | Martin H. Mathematical analysis of some iterative methods for the reconstruction of memory kernels. Electron Trans, 2021, 54: 483-498 |
[19] | Narazaki T. Global solutions to the Cauchy problem for the weakly coupled system of damped wave equations. Dynamical systems, differential equations and applications, 7th AIMS Conference, 2009, special: 592-601 |
[20] | Nishihara K, Wakasugi Y. Critical exponent for the Cauchy problem to the weakly coupled damped wave system. Nonlinear Anal, 2014, 108(5): 249-259 |
[21] |
Nunes do Nasci![]() ![]() |
[22] | Palmieri A. Global existence of solutions for semi-linear wave equation with scale-invariant damping and mass in exponentially weighted spaces. J Math Anal Appl, 2018, 461(2): 1215-1240 |
[23] | Palmieri A, Reissig M. A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass. J Differential Equations, 2019, 266(2/3): 1176-1220 |
[24] | Palmieri A, Takamura H. Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities. Nonlinear Anal, 2019, 187(2): 467-492 |
[25] | Palmieri A, Tu Z. Lifespan of semilinear wave equation with scale invariant dissipation and mass and sub-Strauss power nonlinearity. J Math Anal Appl, 2019, 470: 447-469 |
[26] | Said-Houari B, Kirane M. Global nonexistence results for a class of hyperbolic systems. Nonlinear Anal, 2011, 74(17): 6130-6143 |
[27] |
Schaeffer J. The equation ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
[28] | Sideris T C. Nonexistence of global solutions to semilinear wave equations in high dimensions. J Differential Equations, 1984, 52(3): 378-406 |
[29] | Strauss W A. Nonlinear scattering theory at low energy. J Functional Analysis, 1981, 41(1): 110-133 |
[30] | Sun F, Wang M. Existence and nonexistence of global solutions for a nonlinear hyperbolic system with damping. Nonlinear Anal, 2007, 66(12): 2889-2910 |
[31] | Wakasugi Y. Critical exponent for the semilinear wave equation with scale invariant damping. Fourier Analysis: Pseudo-differential Operators, Time-Frequency Analysis and Partial Differential Equations. Springer International Publishing, 2014: 375-390 |
[32] | Yordanov B T, Zhang Q S. Finite time blow up for critical wave equations in high dimensions. J Funct Anal, 2006, 231(2): 361-374 |
[33] | Zhou Y. Cauchy problem for semilinear wave equations in four space dimensions with small initial data. J Partial Differential Equations, 1995, 8(2): 135-144 |
[34] | Zhou Y. Blow up of solutions to semilinear wave equations with critical exponent in high dimensions. Chin Ann Math, 2007, 28(2): 205-212 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 36
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 64
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|