Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (1): 153-164.
Previous Articles Next Articles
Lv Xueqin1,2,He Songyan3,Wang Shiyu2,4,*()
Received:
2024-03-12
Revised:
2024-08-02
Online:
2025-02-26
Published:
2025-01-08
Supported by:
CLC Number:
Lv Xueqin, He Songyan, Wang Shiyu. Combining RKM with FDM for Time Fractional Convection-Diffusion Equations with Variable Coefficients[J].Acta mathematica scientia,Series A, 2025, 45(1): 153-164.
[1] | Gupta S, Thakur B. Extended Legendre wavelet method for solving fractional order time hyperbolic partial differential equation. Int J Appl Comput Math, 2023, 9(3): 41-64 |
[2] | Osman M, Xia Y, Marwan M, Omer O A. Novel approaches for solving fuzzy fractional partial differential equations. Fractal Fract 2022, 6(11): Article 656 |
[3] | An X Y, Liu F W, Zheng M L, et al. A space-time spectral method for time-fractional Black-Scholes equation. Appl Numer Math, 2021, 165: 152-166 |
[4] | Prakash A, Veeresha P, Prakasha D G, Goyal M. A homotopy technique for a fractional order multi-dimensional telegraph equation via the Laplace transform. Eur Phys J Plus, 2019, 134: 1-18 |
[5] | Lin Y, Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys, 2007, 225(2): 1533-1552 |
[6] | Chen Y, Wu Y, Cui Y, et al. Wavelet method for a class of fractional convection-diffusion equation with variable coefficients. J Comput Sci, 2010, 1(3): 146-149 |
[7] | Saadatmandi A, Dehghan M, Azizi M R. The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun Nonlinear Sci Numer Simul, 2012, 17(11): 4125-4136 |
[8] | Yaseen M, Abbas M, Nazir T, Baleanu D. A finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation. Adv Difference Equ, 2017, 2017: 1-18 |
[9] | Ren L, Wang Y M. A fourth-order extrapolated compact difference method for time-fractional convection-reaction-diffusion equations with spatially variable coefficients. Appl Math Comput, 2017, 312: 1-22 |
[10] | Saw V, Kumar S. Collocation method for time fractional diffusion equation based on the Chebyshev polynomials of second kind. Int J Appl and Comput Math, 2020, 6(4): 117-129 |
[11] | Saw V, Kumar S. The Chebyshev collocation method for a class of time fractional convection-diffusion equation with variable coefficients. Math Methods Appl Sci, 2021, 44(8): 6666-6678 |
[12] | Uddin M, Haq S. RBFs approximation method for time fractional partial differential equations. Commun Nonlinear Sci Numer Simul, 2011, 16(11): 4208-4214 |
[13] | Zhang J, Zhang X, Yang B. An approximation scheme for the time fractional convection-diffusion equation. Appl Math Comput, 2018, 335: 305-312 |
[14] | Ravi Kanth A S V, Garg N. Numerical simulation of time fractional advection-diffusion-reaction equation using exponential B-Splines// Kumar A, Srivastava S, Singh S. Renewable Energy Towards Smart Grid: Select Proceedings of SGESC 2021. Singapore: Springer, 2022: 133-143 |
[15] | Li J C, Qin X Q. Finite point method for the time fractional convection-diffusion equation Xiong N, Xiao Z, Tong Z, et al. Advances in Computational Science and Computing. Cham: Springer, 2019: 28-36 |
[16] | 傅博, 王世宇, 高婷婷, 吕学琴. 带有 Caputo-Fabrizio 导数的分数阶微分方程的快速高阶算法的研究. 数学物理学报, 2023, 43A(3): 896-912 |
Fu B, Wang S Y, Gao T T, Lv X Q. A fast high order method for fractional differential equations with the Caputo-Fabrizio derivative. Acta Math Sci, 2023, 43A(3): 896-912 | |
[17] | Cui M, Deng Z H. Numerical Functional Method in Reproducing Kernel Space. Harbin: The Publication of Harbin Institute of Technology, 1988 |
[18] | Cui M, Yan Y. The representation of the solution of a kind of operator equation Au=f. Numer Math J Chin Univ, 1995, 1: 82-86 |
[19] | Li X Y, Li H X, Wu B Y. Piecewise reproducing kernel method for linear impulsive delay differential equations with piecewise constant arguments. Appl Math Comput, 2019, 349: 304-313 |
[20] | Mei L. A novel method for nonlinear impulsive differential equations in broken reproducing kernel space. Acta Math Sci, 2020, 40: 723-733 |
[21] | Lv X, Cui M. An efficient computational method for linear fifth-order two-point boundary value problems. J Comput Appl Math, 2010, 234(5): 1551-1558 |
[22] | Sahihi H, Allahviranloo T, Abbasbandy S. Solving system of second-order BVPs using a new algorithm based on reproducing kernel Hilbert space. Appl Numer Math, 2020, 151: 27-39 |
[23] | Niu J, Sun L, Xu M, Hou J. A reproducing kernel method for solving heat conduction equations with delay. Appl Math Lett, 2020, 100: 106036 |
[24] | Chen Z, Jiang W, Du H. A new reproducing kernel method for Duffing equations. Int J Comput Math, 2021, 98(11): 2341-2354 |
[25] | Mei L, Wu B, Lin Y. Shifted-Legendre orthonormal method for high-dimensional heat conduction equations. AIMS Math, 2022, 7(5): 9463-9478 |
[26] | Fardi M, Al-Omari S K Q, Araci S. A pseudo-spectral method based on reproducing kernel for solving the time-fractional diffusion-wave equation. Adv Contin Discrete Models, 2022, 2022(1): 54-67 |
[27] | Li Z, Chen Q, Wang Y, Li X. Solving two-sided fractional super-diffusive partial differential equations with variable coefficients in a class of new reproducing kernel spaces. Fractal Fract, 2022, 6(9): 492-502 |
[28] | Mercer J. Functions of positive and negative type and their connection with theory of integral equations. Proc R Soc Lond, 1909: 83(559): 69-70 |
[1] | Zaiyong Feng,Ning Chen,Yongpeng Tai,Zhengrong Xiang. On the Observer Design for Fractional Singular Linear Systems [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1529-1544. |
[2] | Xuanxuan Xi,Mimi Hou,Xianfeng Zhou. Invariance Sets and Well-Posedness for the Weak Solution of Non-Autonomous Caputo Fractional Evolution Equation [J]. Acta mathematica scientia,Series A, 2021, 41(1): 149-165. |
[3] | Zhihong Zhao,Yingzhen Lin. Reproducing Kernel Method for Piecewise Smooth Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1333-1340. |
[4] | Quanyi Gong,Huanmin Yao. Reproducing Kernel Shifted Legendre Basis Function Method for Solving the Fractional Differential Equations [J]. Acta mathematica scientia,Series A, 2020, 40(2): 441-451. |
[5] | Cai Qifu, Gao Xiling. A Numerical Method of Shallow Water Equations [J]. Acta mathematica scientia,Series A, 1998, 18(4): 467-471. |
[6] | Cai Qifu. Second-order Conservative Algorithm for Unsteady Free-Suface Flows with shocks [J]. Acta mathematica scientia,Series A, 1997, 17(4): 473-478. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 71
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 51
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|