Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (1): 136-152.
Previous Articles Next Articles
Received:
2023-08-30
Revised:
2024-08-15
Online:
2025-02-26
Published:
2025-01-08
CLC Number:
Liu Hongmei, Li Yang. Reduction and Summation Formulas for Two Types of Kampé de Fériet Series[J].Acta mathematica scientia,Series A, 2025, 45(1): 136-152.
[1] | Appell P, Kampé de Fériet J. Fonctions Hypergéométriques et Hypersphériques Polynomes D'Hermite. Paris: Gauthier-Villars, 1926 |
[2] | Bailey W N. Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics 32. London: Cambridge University Press, 1935 |
[3] |
Bezrodnykh S I. Analytic continuation of Lauricella's function ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
[4] |
Bezrodnykh S I. Analytic continuation of Lauricella's function ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
[5] | Bezrodnykh S I. Analytic continuation of the Kampé de Fériet function and the general double Horn series. Integral Transforms Spec Funct, 2022, 33(11): 908-928 |
[6] | Buschman R G, Srivastava H M. Series identities and reducibility of Kampé de Fériet functions. Math Proc Cambridge Philos Soc, 1982, 91(3): 435-440 |
[7] | Bytev V V, Kniehl B A. Derivatives of any Horn-type hypergeometric functions with respect to their parameters. Nuclear Phys B, 2020, 952: 114911 |
[8] |
Carlitz L. Summation of a special ![]() ![]() ![]() |
[9] | Chan W C C, Chen K Y, Chyan C J, Srivastava H M. Some multiple hypergeometric transformations and associated reduction formulas. J Math Anal Appl, 2004, 294(2): 418-437 |
[10] | Chen K Y, Srivastava H M. Series identities and associated families of generating functions. J Math Anal Appl, 2005, 311(2): 582-599 |
[11] |
Chu W C, Li N N. Reduction and summation formulae for semi-terminating ![]() |
[12] | Chu W C, Srivastava H M. Ordinary and basic bivariate hypergeometric transformations associated with the Appell and Kampé de Fériet functions. J Comput Appl Math, 2003, 156(2): 355-370 |
[13] |
Chu W C, Zhang W L. Well-posed reduction formulas for the ![]() |
[14] | Cvijović D, Miller A R. A reduction formula for the Kampé de Fériet function. Appl Math Lett, 2010, 23(7): 769-771 |
[15] | Gasper G. Positive integrals of Bessel functions. SIAM J Math Anal, 1975, 6(5): 868-881 |
[16] | Jia C Z, Wang T M. Reduction and transformation formulae for bivariate basic hypergeometric series. J Math Anal Appl, 2007, 328(2): 1152-1160 |
[17] |
Jia C Z, Wang T M. Transformation and reduction formulae for double ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
[18] | Kampé de Fériet J. Les fonctions hypergéométriques d'ordre supérieur à deux variables. CR Acad Sci Paris, 1921, 173: 401-404 |
[19] | Karlsson P W. Some reducible generalized Kampé de Fériet functions. J Math Anal Appl, 1983, 96(2): 546-550 |
[20] | Karlsson P W. Some reduction formulae for double power series and Kampé de Fériet functions. Indag Math, 1984, 87(1): 31-36 |
[21] |
Li N N, Chu W. Terminating balanced ![]() ![]() ![]() ![]() ![]() ![]() |
[22] |
Liu H M. Hypergeometric series summations and ![]() |
[23] | Liu H M, Wang W P. Transformation and summation formulae for Kampé de Fériet series. J Math Anal Appl, 2014, 409(1): 100-110 |
[24] | 刘红梅, 周文书, 李阳. 双变量超几何级数的变换与简化公式. 数学物理学报, 2016, 36A(1): 150-156 |
Liu H M, Zhou W S, Li Y. Transformation and reduction formulae for bivariate hypergeometric series. Acta Math Sci, 2016, 36A(1): 150-156 | |
[25] |
Luo M J, Raina R K. On certain results related to the hypergeometric function ![]() ![]() |
[26] | Mouayn Z, Chhaiba H, Kassogue H, Kikodio P K. Husimi Q-functions attached to hyperbolic Landau levels. Rep Math Phys, 2022, 89(1): 27-57 |
[27] |
Pitre S N, Van der Jeugt J. Transformation and summation formulas for Kampé de Fériet series ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
[28] |
Santander J L G. A note on some reduction formulas for the generalized hypergeometric function ![]() ![]() ![]() |
[29] | Slater L J. Generalized Hypergeometric Functions. Cambridge: Cambridge Univ Press, 1966 |
[30] |
Rao K S, Van der Jeugt J. Stretched 9-![]() |
[31] | Srivastava H M, Daoust M C. A note on the convergence of Kampé de Fériet's double hypergeometric series. Math Nachr, 1972, 53(1/6): 151-159 |
[32] | Srivastava H M, Karlsson P W. Multiple Gaussian Hypergeometric Series. Chichester: Ellis Horwood, 1985 |
[33] | Srivastava H M, Panda R. An integral representation for the product of two Jacobi polynomials. J Lond Math Soc, 1976, 2(4): 419-425 |
[34] |
Van der Jeugt J.Transformation formula for a double Clausenian hypergeometric series, its ![]() |
[35] | Van der Jeugt J, Pitre S N, Rao K S. Transformation and summation formulas for double hypergeometric series. J Comput Appl Math, 1997, 83(2): 185-193 |
[36] |
Zhang W L. New transformation and reduction formulae for double ![]() |
[1] | Hongmei Liu. Infinite Series Involving Central Binomial Coefficients and Generalized Harmonic Numbers [J]. Acta mathematica scientia,Series A, 2020, 40(3): 631-640. |
[2] | Liu Hongmei, Zhou Wenshu, Li Yang. Transformation and Reduction Formulae for Bivariate Hypergeometric Series [J]. Acta mathematica scientia,Series A, 2016, 36(1): 150-156. |
[3] | ZHANG Chun-Gou. The Second Moments for Meyer Konig and Zeller Operators on a Simplex [J]. Acta mathematica scientia,Series A, 2005, 25(2): 256-263. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 158
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 39
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|