Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (6): 1445-1475.
Previous Articles Next Articles
Gong Simeng2(),Zhang Xueyao1,*(),Guo Zhenhua1,2()
Received:
2024-01-09
Revised:
2024-07-31
Online:
2024-12-26
Published:
2024-11-22
Supported by:
CLC Number:
Gong Simeng, Zhang Xueyao, Guo Zhenhua. The Existence of Global Strong Solution to the Compressible Axisymmetric Navier-Stokes Equations with Density-Dependent Viscosities[J].Acta mathematica scientia,Series A, 2024, 44(6): 1445-1475.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Hoff D, Smoller J. Non-formation of vacuum states for compressible Navier-Stokes equations. Commun Math Phys, 2001, 216(2): 255-276 |
[2] | Kanel J I. A model system of equations for the one-dimensional motion of a gas. Differ Uravn, 1968, 4(4): 721-734 |
[3] | Kazhikhov A V, Shelukhin V V. Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J Appl Math Mech, 1977, 41: 282-291] |
[4] | Liu T P, Smoller J. On the vacuum state for the isentropic gas dynamics equations. Adv Appl Math, 1980, 1(4): 345-359 |
[5] | Nash J. Le probl$\grave{\mathrm{e}}$me de Cauchy pour les $\grave{\mathrm{e}}$quations diff$\grave{\mathrm{e}}$rentielles d'un fluide g$\grave{\mathrm{e}}$n$\grave{\mathrm{e}}$ral. Bull Soc Math Fr, 1962, 90: 487-497 |
[6] | Itaya N. On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids. Kodia Math Sem Rep, 1971, 23: 60-120 |
[7] | Tani A. On the first initial-boundary value problem of compressible viscous fluid motion. Publ Res Inst Math Sci Kytt Univ, 1971, 13: 193-253 |
[8] | Cho Y, Kim H. On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities. Manuscr Math, 2006, 120: 91-129 |
[9] | Luo Z. Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum. Commun Math Sci, 2012, 10(2): 527-554 |
[10] | Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20: 67-104 |
[11] | Hoff D. Discontinuous solution of the Navier-Stokes equations for multi-dimensional heat-conducting fluids. Arch Ration Mech Anal, 1997, 193: 303-354 |
[12] | Danchin R. Global existence in critical spaces for compressible Navier-Stokes equations. Invent Math, 2000, 141: 579-614 |
[13] | Lions P L. Mathematical Topics in Fluid Dynamics. Compressible Models. Oxford: Clarendon Press, 1998 |
[14] | Jiang S, Zhang P. Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids. J Math Pures Appl, 2003, 82(9): 949-973 |
[15] | Feireisl E, Novotn$\acute{\mathrm{y}}$ A, Petzeltov$\acute{\mathrm{a}}$ H. On the existence of globally defined weak solutions to the Navier-Stokes equations. J Math Fluid Mech, 2001, 3(4): 358-392 |
[16] | Huang X D, Li J, Xin Z P. Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Commun Pure Appl Math, 2012, 65: 549-585 |
[17] | Liu T P, Xin Z P, Yang T. Vacuum states of compressible flow. Discrete Contin Dyn Syst, 1998, 4: 1-32 |
[18] | Evans C. Partial Differential Equations. Providence: American Mathematical Society, 2010 |
[19] | Tatsien L, Qin T. Physics and Partial Differential Equations. Beijing: Higher Education Press, 2012 |
[20] | Vaigant V A, Kazhikhov A V. On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid. (Russian) Sibirsk Mat Zh, 1995, 6(36): 1283-1316 [translation in Siberian Math J, 1995, 6(36): 1108-1141] |
[21] | Jiu Q S, Wang Y, Xin Z P. Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum. J Math Fluid Mech, 2014, 3(16): 483-521 |
[22] | Huang X D, Li J. Existence and blowup behavior of global strong solutions to the twodimensional baratropic compressible Navier-Stokes system with vacuum and large initial data. J Math Pures Appl, 2016, 106(1): 123-154 |
[23] | Wang M, Li Z L, Guo Z H. Global solutions to a 3D axisymmetric compressible Navier-Stokes system with density-dependent viscosity. Acta Math Sci, 2022, 2(42): 521-539 |
[24] | Guo Z H, Wang M, Wang Y. Global solution to 3D spherically symmetric compressible Navier-Stokes equations with large data. Nonlinear Analysis: Real World Applications, 2018, 40: 260-289 |
[25] | Bresch D, Desjardins B, Lin C K. On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm Partial Differential Equations, 2003, 28: 843-868 |
[26] | Bresch D, Desjardins B. Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Comm Math Phys, 2003, 238: 211-223 |
[27] | Mellet A, Vasseur A. On the barotropic compressible Navier-Stokes equations. Comm Partial Differential Equations, 2007, 32: 431-452 |
[28] | Guo Z H, Jiu Q S, Xin Z P. Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J Math Anal, 2008, 39(5): 1402-1427 |
[29] | Guo Z H, Li H L, Xin Z P. Lagrange structure and dynamical for sphericall symmetric compressible Navier-Stokes equations. Comm Math Phys, 2012, 309: 371-412 |
[30] | Li J, Xin Z P. Global existence of weak solutions to the barotropic compressible Navier-Stokes flows with degenerate viscosities. arXiv:1504.06826 |
[31] | Vasseur A F, Yu C. Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations. Invent Math, 2016, 206(3): 935-974 |
[32] | Bresch D, Vasseur A F, Yu C. Global existence of entropy-weak solutions to the compressible Navier-Stokes equations with non-linear density dependent viscosities. J Eur Math Soc, 2022, 24(5): 1791-1837 |
[33] | Li Y C, Pan R H, Zhu S G. On classical solutions to 2D shallow water equations with degenerate viscosities. J Math Fluid Mech, 2017, 19: 151-190 |
[34] | Zhu S G. Existence results for viscous polytropic fluids with degenerate viscosity coefficients and vacuum. J Differ Equ, 2015, 230: 84-119 |
[35] | Li Y C, Pan Y H, Zhu S G. On classical solutions for viscous polytropic fluids with degenerate viscosities and vacuum. Arch Ration Mech Anal, 2019, 234: 1281-1334 |
[36] | Zhu S G. Well-Posedness and Singularity Formation of Compressible Isentropic Navier-Stokes Equations[Ph.D Thesis]. Shanghai: Shanghai Jiao Tong University, 2015 |
[37] | Xin Z P, Zhu S G. Well-posedness of the three-dimensional isentropic compressible Navier-Stokes equations with degenerate viscosities and far field vacuum. J Math Pures Appl, 2021, 152(9): 94-144 |
[38] | Xin Z P, Zhu S G. Global well-posedness of regular solutions to the three-dimensional isentropic compressible Navier-Stokes equations with degenerate viscosities and vacuum. Adv Math, 2021, 393: 108072 |
[39] | Guo Z H, Song W J. Global well-posedness and large-time behavior of classical solutions to the 3D Navier-Stokes system with changed viscosities. J Math Phys, 2019, 60(3): 031502 |
[40] | Hoff D. Dynamics of singularity surfaces for compressible, viscous flows in two space dimesions. Comm Pure Appl Math, 2002, 55(11): 1365-1407 |
[41] | Novotn$\acute{\mathrm{y}}$ A, Stra$\breve{\mathrm{s}}$kraba I. Introduction to the Mathematical Theory of Compressible Flow. Oxford: Oxford Univ Press, 2004 |
[42] | Zlotnik A A. Uniform estimates and stabilization of symmetric solutions of a system of quasi-linear equations. Diff Uravn, 2000, 5(36): 634-646 [translation in Differ Equ, 2000, 5(36): 701-716] |
[43] | Guo Z H, Zhang X Y. Interface behavior and decay rates of compressible Navier-Stokes system with density-dependent viscosity and a vacuum. Acta Math Sci, 2024, 44B(1): 247-274 |
|