[1] |
Liapounoff A. Problème général de la stabilité du mouvement. Ann Fac Sci Toulouse Sci Math Sci Phys, 1907, 9(2): 203-474
|
[2] |
De Nápoli P L, Pinasco J P. Lyapunov-type inequalities for partial differential equations. J Funct Anal, 2016, 270(6): 1995-2018
|
[3] |
Agarwal R P, Bohner M, Özbekler A. Lyapunov Inequalities and Applications. Cham: Springer, 2021
|
[4] |
Aktaş M F, Erçikti B B. On Lyapunov-type inequalities for five different types of higher order boundary value problems. Turkish J Math, 2024, 48(1): 90-105
|
[5] |
Aktaş M F. On Lyapunov-type inequalities for ($n+1$)st order nonlinear differential equations with the antiperiodic boundary conditions. Turkish J Math, 2021, 45(6): 2614-2622
|
[6] |
Takeuchi S, Watanabe K. Lyapunov-type inequalities for a Sturm-Liouville problem of the one-dimensional $p$-Laplacian. Differential Integral Equations, 2021, 34(7/8): 383-399
|
[7] |
Kassymov A, Kirane M, Torebek B T. Lyapunov,Hartman-Wintner and de La Vallée Poussin-type inequalities for fractional elliptic boundary value problems. Complex Var Elliptic Equ, 2022, 67(1): 246-258
|
[8] |
Stegliński R. Sharp Lyapunov-type inequalities for second-order half-linear difference equations with different kinds of boundary conditions. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM, 2021, 115(3): Article 140
|
[9] |
Kayar Z, Zafer A. Lyapunov-type inequalities for nonlinear impulsive systems with applications. Electron J Qual Theory Differ Equ, 2016, 2016: Article 27
|
[10] |
Agarwal R P, Denk Oğuz A, Özbekler A. Lyapunov-type inequalities for Lidstone boundary value problems on time scales. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM, 2020, 114(2): Article 98
|
[11] |
Ferreira R A C. A Lyapunov-type inequality for a fractional boundary value problem. Fract Calc Appl Anal, 2013, 16(4): 978-984
|
[12] |
Ferreira R A C. On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function. J Math Anal Appl, 2014, 412(2): 1058-1063
|
[13] |
Ƚupińska B. Existence and nonexistence results for fractional mixed boundary value problems via a Lyapunov-type inequality. Period Math Hungar, 2024, 88(1): 118-126
|
[14] |
Ntouyas S K, Ahmad B. Lyapunov-type inequalities for fractional differential equations: a survey. Surv Math Appl, 2021, 16: 43-93
|
[15] |
Zohra B F, Benaouda H, Mokhtar K. Lyapunov- and Hartman-Wintner-type inequalities for a nonlinear fractional BVP with generalized $\Psi$-Hilfer derivative. Math Methods Appl Sci, 2021, 44(3): 2637-2649
|
[16] |
Ntouyas S K, Ahmad B, Tariboon J. A Survey on recent results on Lyapunov-type inequalities for fractional differential equations. Fractal Fract, 2022, 6(5): 273
|
[17] |
Zhang W, Zhang J, Ni J. Lyapunov-type inequalities for fractional Langevin-type equations involving Caputo-Hadamard fractional derivative. J Inequal Appl, 2022, 2022: Article 48
|
[18] |
Laadjal Z, Ma Q. Lyapunov-type inequalities for fractional Langevin differential equations. J Math Inequal, 2023, 17(1): 67-82
|
[19] |
Pourhadi E, Mursaleen M. A new fractional boundary value problem and Lyapunov-type inequality. J Math Inequal, 2021, 15(1): 81-93
doi: 10.7153/jmi-2021-15-08
|
[20] |
Wang Y, Wang Q. Lyapunov-type inequalities for nonlinear fractional differential equation with Hilfer fractional derivative under multi-point boundary conditions. Fract Calc Appl Anal, 2018, 21(3): 833-843
|
[21] |
马德香, Özbekler A. 一类带强迫项的高阶半线性分数阶微分方程的广义 Lyapunov 不等式. 数学物理学报, 2020, 40A(6): 1537-1551
|
|
Ma D X, Özbekler A. Generalized Lyapunov inequalities for a higher-order sequential fractional differential equation with half-linear terms. Acta Math Sci, 2020, 40A(6): 1537-1551
|
[22] |
Torvik P J, Bagley R L. On the appearance of the fractional derivative in the behavior of real materials. J Appl Mech, 1984, 51(2): 294-298
|
[23] |
Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006
|