Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (5): 1392-1399.
Previous Articles Next Articles
Yang Hong1,*(),Zhang Xiaoguang2
Received:
2023-10-19
Revised:
2023-12-26
Online:
2024-10-26
Published:
2024-10-16
Supported by:
CLC Number:
Yang Hong, Zhang Xiaoguang. A Stochastic SIS Epidemic Model on Simplex Complexes[J].Acta mathematica scientia,Series A, 2024, 44(5): 1392-1399.
[1] | 何大韧, 刘宗华, 汪秉宏. 复杂系统与复杂网络. 北京: 高等教育出版社, 2009 |
He D R, Liu Z H, Wang B H. Complex Systems and Complex Networks. Beijing: Higher Education Press, 2009 | |
[2] | 汪小帆, 李翔, 陈关荣. 网络科学导论. 北京: 高等教育出版社, 2012 |
Wang X F, Li X, Chen G R. Introduction to Network Science. Beijing: Higher Education Press, 2012 | |
[3] | Newman M E J. Networks:An Introduction. New York: Oxford University Press, 2010 |
[4] | 靳祯, 孙桂全, 刘茂省. 网络传染病动力学建模与分析. 北京: 科学出版社, 2014 |
Jin Z, Sun G Q, Liu M X. Modelling and Analysis of Epidemic Spreading on Networks. Beijing: Science Press, 2014 | |
[5] |
Watts D J, Strogatz S H. Collective dynamics of ‘small-world’networks. Nature, 1998, 393(6684): 440-442
doi: 10.1038/30918 |
[6] |
Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286(5439): 509-512
doi: 10.1126/science.286.5439.509 pmid: 10521342 |
[7] |
Pastor R S, Vespignani A. Epidemic spreading in scale-free networks. Physical Review Letters. 2001, 86(14): 3200-3203
pmid: 11290142 |
[8] | Pastor R S, Vespignani A. Epidemic dynamics and endemic states in complex networks. Physical Review E, 2001, 63(6): 066117 |
[9] | Bianconi G. Higher-Order Networks:An Introduction to Simplicial Complexes. New York: Cambridge University Press, 2021 |
[10] | Liu L, Feng M, Xia C, et al. Epidemic trajectories and awareness diffusion among unequals in simplicial complexes. Chaos, Solitons & Fractals, 2023, 173: 113657 |
[11] | Zhang S, Zhao D, Xia C, et al. Impact of simplicial complexes on epidemic spreading in partially mapping activity-driven multiplex networks. Chaos, An Interdisciplinary Journal of Nonlinear Science, 2023, 33(6): 063128 |
[12] | Fan J, Yin Q, Xia C, et al. Epidemics on multilayer simplicial complexes. Proceedings of the Royal Society A, 2022, 478(2261): 20220059 |
[13] | Iacopini I, Petri G, Barrat A, et al. Simplicial models of social contagion. Nature Communications, 2019, 10(1): 1-9 |
[14] | Li W Y, Xue X, Pan L, et al. Competing spreading dynamics in simplicial complex. Applied Mathematics and Computation, 2022, 412: 126595 |
[15] | Xue X, Li W Y, Nie Y, et al. Cooperative epidemic spreading in simplicial complex. Communications in Nonlinear Science and Numerical Simulation, 2022, 114: 106671 |
[16] | Jhun B, Jo M, Kahng B. Simplicial SIS model in scale-free uniform hypergraph. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019(12): 123207 |
[17] | Chowdhary S, Kumar A, Cencetti G, et al. Simplicial contagion in temporal higher-order networks. Journal of Physics: Complexity, 2021, 2(3): 035019 |
[18] | Allen L J S, Burgin A M. Comparison of deterministic and stochastic SIS and SIR models in discrete time. Mathematical Biosciences, 2000, 63(1): 1-33 |
[19] | Roberts M G, Saha A K. The asymptotic behaviour of a logistic epidemic model with stochastic disease transmission. Applied Mathematics Letters, 1999, 12(1): 37-41 |
[20] |
Chaffee J, Kuske R. The effect of loss of immunity on noise-induced sustained oscillations in epidemics. Bulletin of Mathematical Biology, 2011, 73: 2552-2574
doi: 10.1007/s11538-011-9635-7 pmid: 21347814 |
[21] |
Earn D J D, Rohani P, Bolker B M, Grenfell B T. A simple model for complex dynamical transitions in epidemics. Science, 2000, 287(5453): 667-670
doi: 10.1126/science.287.5453.667 pmid: 10650003 |
[22] | Oseledets V I. A multiplicative ergodic theorem. Characteristic Lyapunov, exponents of dynamical systems. Trudy Moskovskogo Matematicheskogo Obshchestva, 1968, 19: 179-210 |
[23] | Risken H, Risken H. Fokker-Planck Equation. New York: Springer, 1996 |
[24] | Arnold L. Random Dynamical Systems. Heidelberg: Springer, 1998 |
[1] | Fu Qinhong, Xiong Lianglin, Zhang Haiyang, Qin Ya, Quan Shenai. Sliding Mode Control for Time-Varying Delay Systems with Semi-Markov Jump [J]. Acta mathematica scientia,Series A, 2023, 43(2): 549-562. |
[2] | Zhang Liping, Zhao Yu, Yuan Sanling. Threshold Dynamical Behaviors of a Stochastic SIS Epidemic Model with Nonlinear Incidence Rate [J]. Acta mathematica scientia,Series A, 2018, 38(1): 197-208. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 94
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 104
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|