Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (5): 1380-1391.
Previous Articles Next Articles
Wang Qiufen1(),Zhang Shuwen1,2,*()
Received:
2023-07-24
Revised:
2024-03-06
Online:
2024-10-26
Published:
2024-10-16
Supported by:
CLC Number:
Wang Qiufen, Zhang Shuwen. Stochastic Predator-Prey System with Fear Effect and Holling-Type III Functional Response[J].Acta mathematica scientia,Series A, 2024, 44(5): 1380-1391.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Qi H K, Meng X Z. Dynamics of a stochastic predator-prey model with fear effect and hunting cooperation. J Appl Math Comput, 2023, 69(4): 2077-2103
doi: 10.1007/s12190-022-01746-7 |
[2] | Gokila C, Sambath M, Balachandran K, Ma Y K. Stationary distribution and global stability of stochastic predator-prey model with disease in prey population. J Biol Dyn, 2023, 17(1): 1-30 |
[3] | Gao J, Zhang J, Lian W. Dynamical complexity of a predator-prey model with a prey refuge and Allee effect. Turk J Math, 2023, 47(7): 2061-2085 |
[4] | Liu M, Mandal P S. Dynamical behavior of a one-prey two-predator model with random perturbations. Commun Nonl Sci Numer Simulat, 2015, 28(1/3): 123-137 |
[5] | Kumar C P, Reddy K S, Srinivas M. Dynamics of prey predator with Holling interactions and stochastic influences. Alex Eng J, 2018, 57(2): 1079-1086 |
[6] | Holling C S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem Ent Soc Can, 1965, 97(45): 1-60 |
[7] | 陈兰荪, 宋新宇, 陆征一. 数学生态学模型与研究方法. 成都: 四川科学技术出版社, 2003 |
Chen L S, Song X Y, Lu Z Y. Mathematical Ecology Models and Research Methods. Chengdu: Sichuan Sci Technol Press, 2003 | |
[8] | Beroual N, Bendjeddou A. On a predator-prey system with Holling functional response: $x^p/(a + x^p)$. Natl Acad Sci Lett, 2016, 39(1): 43-46 |
[9] |
Wang X Y, Zanette L, Zou X F. Modelling the fear effect in predator-prey interactions. J Math Biol, 2016, 73(5): 1179-1204
pmid: 27002514 |
[10] | Mondal S, Maiti A, Samanta G P. Effects of fear and additional food in a delayed predator-prey model. Biophys Rev Lett, 2018, 13(4): 157-177 |
[11] | Pal S, Majhi S, Mandal S, Pal N. Role of fear in a predator-prey model with Beddington-DeAngelis functional response. Z Naturforsch A, 2019, 74(7): 581-595 |
[12] | Wang Q F, Zhang S W. Dynamics of a stochastic delay predator-prey model with fear effect and diffusion for prey. J Math Anal Appl, 2024, 537(2): 128267 |
[13] | 蓝桂杰, 付盈洁, 魏春金, 张树文. 具有 Holling III 功能性反应的随机捕食食饵模型的平稳分布和周期解. 数学物理学报, 2018, 38A(5): 984-1000 |
Lan G J, Fu Y J, Wei C J, Zhang S W. Stationary distribution and periodic solution for stochastic predator-prey model with Holling-type III functional response. Acta Math Sci, 2018, 38A(5): 984-1000 | |
[14] | 张树文. 具有时滞和扩散的随机捕食-食饵系统. 数学物理学报, 2015, 35A(3): 592-603 |
Zhang S W. A stochastic predator-prey system with time delay and prey dispersal. Acta Math Sci, 2015, 35A(3): 592-603 | |
[15] | 千美华, 崔莹, 李晓月. 随机环境下 Holling III 型捕食-食饵系统动力学行为. 东北师大学报 (自然科学版), 2023, 55(1): 40-44 |
Qian M H, Cui Y, Li X Y. Dynamics behavior of the Holling III type predator-prey model in a random environment. J Northeast Norm Univ (Nat Sci Ed), 2023, 55(1): 40-44 | |
[16] | 王克. 随机生物数学模型. 北京: 科学出版社, 2010 |
Wang K. Random Biological Mathematical Model. Beijing: Science Press, 2010 | |
[17] | Mandal P S, Banerjee M. Stochastic persistence and stationary distribution in a Holling-Tanner type prey-predator model. Physica A, 2012, 391(4): 1216-1233 |
[1] | Zhang Wenwen, Liu Zhijun, Wang Qinglong. Exponential Extinction, Stationary Distribution and Probability Density Function of A Stochastic Predator-Prey Model with Ornstein-Uhlenbeck Process [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1368-1379. |
[2] | Li Dan,Wei Fengying,Mao Xuerong. Survival Analysis of an SVIR Epidemic Model with Media Coverage [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1595-1606. |
[3] | Jiang Li,Guijie Lan,Shuwen Zhang,Chunjin Wei. Dynamics Analysis of a Stochastic Glucose-Insulin Model [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1937-1949. |
[4] | Yue Sun,Daoxiang Zhang,Wen Zhou. The Influence of Fear Effect on Stability Interval of Reaction-Diffusion Predator-Prey System with Time Delay [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1980-1992. |
[5] | Liya Liu,Daqing Jiang. Global Dynamics of a Stochastic Chemostat Model with General Response Function and Wall Growth [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1912-1924. |
[6] | Xin Wu,Rong Yuan,Zhaohai Ma. Analysis on Critical Waves and Non-Critical Waves for Holling-Tanner Predator-Prey System with Nonlocal Diffusion [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1705-1717. |
[7] | Tengfei Wang,Tao Feng,Xinzhu Meng. Complex Dynamics and Stochastic Sensitivity Analysis of a Predator-Prey Model with Crowley-Martin Type Functional Response [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1192-1203. |
[8] | Yingjie Fu,Guijie Lan,Shuwen Zhang,Chunjin Wei. Dynamics of a Stochastic Predator-Prey Model with Pulse Input in a Polluted Environment [J]. Acta mathematica scientia,Series A, 2019, 39(3): 674-688. |
[9] | Guijie Lan,Yingjie Fu,Chunjin Wei,Shuwen Zhang. Stationary Distribution and Periodic Solution for Stochastic Predator-Prey Systems with Holling-Type Ⅲ Functional Response [J]. Acta mathematica scientia,Series A, 2018, 38(5): 984-1000. |
[10] | Wei Fengying, Lin Qingteng. Extinction and Distribution for an SIQS Epidemic Model with Quarantined-Adjusted Incidence [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1148-1161. |
[11] | Zhang Shuwen. Dynamics of a Predator-Prey System with Impulsive Perturbations and Markovian Switching [J]. Acta mathematica scientia,Series A, 2016, 36(3): 569-583. |
[12] | HU Guang-Ping, LI Xiao-Ling. Stationary Patterns of a Leslie-Gower Type Three Species Model with Cross-Diffusions [J]. Acta mathematica scientia,Series A, 2013, 33(1): 16-27. |
[13] | ZHONG Min-Ling, LIU Xiu-Xiang. Dynamical Analysis of a Predator-prey System with Hassell-Varley-Holling Functional Response [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1295-1310. |
[14] | SHI Hong-Bo, LI Wan-Tong, LIN Guo. Qualitative Analysis of a Modified Leslie-Gower Predator-Prey System with Diffusion [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1403-1415. |
[15] | QIN Fa-Jin. Multiple Periodic Solutions for a Delayed Stage-Structure Predator-Prey Systems |with Harvesting Rate and Diffusion [J]. Acta mathematica scientia,Series A, 2009, 29(6): 1613-1622. |
|