[1] |
Väisälä J. Lectures on $n$-Dimensional Quasiconformal Mappings. Berlin: Springer, 1971
|
[2] |
Gehring F W, Palka B P. Quasiconformally homogeneous domains. Journal d Analyse Mathematique, 1976, 30(1): 172-199
doi: 10.1007/BF02786713
|
[3] |
Väisälä J. Free quasiconformality in Banach spaces I. Ann Acad Sci Fenn Ser A I Math, 1990, 15(2): 355-379
|
[4] |
Väisälä J. Free quasiconformality in Banach spaces II. Ann Acad Sci Fenn Ser A I Math, 1991, 16(2): 255-310
|
[5] |
Väisälä J. Free quasiconformality in Banach spaces III. Ann Acad Sci Fenn Ser A I Math, 1992, 17(2): 393-408
|
[6] |
Väisälä J. Free quasiconformality in Banach spaces IV//Andreian-Cazacu C, et al. Analysis and Topology. Singapore: World Scientific, 1998: 697-717
|
[7] |
Huang X J, Liu J S. Quasihyperbolic metric and quasiconformal mappings in metric spaces. Trans Amer Math Soc, 2015, 367(9): 6225-6246
|
[8] |
Liu H J, Huang X J. The properties of quasisymmetric mappings in metric spaces. J Math Anal Appl, 2016, 435: 1591-1606
|
[9] |
Li Y X, Huang M Z, Wang X T, et al. On the subinvariance of uniform domains in metric spaces. arXiv:1501.07375
|
[10] |
Heinonen J. Lectures on Analysis on Metric Spaces. Berlin: Springer, 2001
|
[11] |
Zhou Q S. The haracteristics of free quasiconformal mapping in metric space. Changsha: Hunan Normal University, 2016
|